# RF BACKGROUND STUDIES AND PLANS

Yağmur Torun

torun@iit.edu

Center for Accelerator and Particle Physics



#### Cast

People directly involved in measurements

Argonne: J. Norem

Berkeley: D. Li

CERN: P. Gruber

U. Cincinnati: V. Wu

Fermilab: A. Bross, A. Moretti, M. Popovic, Z. Qian

IIT: N. Solomey, Y. Torun

U. Illinois: L. Ducas

Imperial College: E. McKigney

Many others have helped

#### Introduction

We need to characterize radiation field around RF cavities to

- identify relevant diagnostics for cavity operation
- test and select instrumentation for cooling channel
- understand background environment for detectors in a cooling experiment (MICE)

#### Problem



- Electrons stripped from metal surface
- accelerated by cavity field, generate x-rays
- dark current absorbed by liquid hydrogen
- x-rays flood downstream detectors

#### **Issues**

Initial concern due to results from 805MHz open-iris cavity at highest gradients

- Absorber heat load
  - saw  $\sim 1 \mu \text{A}$  average dark current at 16MV/m
  - deposited energy per particle comparable to muons
  - Study II muon current  $\sim 5\mu \text{A}$
- Window integrity
  - dark current focused around magnetic field lines
  - burned hole in vacuum window during operation
- MICE detector backgrounds

#### Field emission

Fowler-Nordheim current density  $j_{FN}$  from tunneling through potential barrier (work function  $\phi$ ) at metal surface

$$j_{FN}(E) = \frac{A}{\phi} (\beta E)^2 exp \left( -\frac{B\phi^{3/2}}{\beta E} \right)$$

$$n = \frac{E}{j} \frac{dj}{dE} \simeq 2 + \frac{67.4 \text{GV/m}}{\beta E}$$

#### Field emission

Fowler-Nordheim current density  $j_{FN}$  from tunneling through potential barrier (work function  $\phi$ ) at metal surface

$$j_{FN}(E) = \frac{A}{\phi} (\beta E)^2 exp \left( -\frac{B\phi^{3/2}}{\beta E} \right)$$

$$n = \frac{E}{j} \frac{dj}{dE} \simeq 2 + \frac{67.4 \text{GV/m}}{\beta E}$$



### Instrumentation challenge

- Extremely steep dependence of I on E ( $n\sim 10$  for 8GV/m surface field)
- No single detector/technology can cover (or survive!)
   entire dynamic range (over 10 orders of magnitude)
- Hard to control systematics and make repeatable measurements
- Had to try (and occasionally fry) many different detectors
- Need to crosscheck results often

# Facility: Lab-G



#### **Detectors**

- Signals change scale during conditioning
- Dose monitors to track overall progress
- Glass, polaroid/standard film for spatial detail
- Current transformers for dark current
- Scintillators for rates and fast diagnostics
- Ge diode and rangestack for spectrometry



# Results



























# Scintillating fibers

MUSCAT prototype tested Nov 01 (E. McKigney, P. Gruber). New detector (A. Bross) used for MICE background estimates

- Would overwhelm MICE fiber tracker without shielding
- OK with absorber  $\sim 1$ kHz/fiber at 8MV/m  $\Rightarrow$  <10MHz at 200MHz
- Improved with conditioning





# Glass plate photography

- Put thin plates flush against window (J. Norem)
- Beamlets from single emitters in magnetic field
- Turned into rings at low field
- Radius consistent with ExB drift  $r \sim E/B^2$









# Photographic paper

- Use Polaroid for short exposures to follow progress in cavity conditioning
- Exposed standard b&w paper, develop, scan (P. Gruber)
- Intensity pattern over large area
- Rangestack with 1.6mm Al plates at 10MV/m →
  - Front layer saturated
  - Can see emitters after 1 plate
  - 2 plates stop dark current
  - uniform x-ray image



# Photographic paper

#### Individual emitters visible



#### Can follow transport in fringe field



Away from cavity  $\rightarrow$ 

# Data acquisition

- Existing DAQ system saves slow signals
- Built auxiliary DAQ to make it easier to set up and automate new measurements
- System in use but not integrated yet





# Open-iris vs pillbox data

|                  | Open-cell           | Pillbox                                                           |
|------------------|---------------------|-------------------------------------------------------------------|
| Dark current     | 25 mA at 16 MV/m,   | Not measurable                                                    |
|                  | 600 mA at 24 MV/m   | (<0.1mA)                                                          |
| Fiber saturation |                     |                                                                   |
| at B = 2.5T      | 1.5MV/m             | >13MV/m                                                           |
| Window interior  | covered with Cu     | no deposits                                                       |
| Window           | two during magnetic |                                                                   |
| failures         | field operation     | none                                                              |
| Cavity           | heavy pitting       | some pitting                                                      |
| interior         | on irises           | on endplates  Y. Torun – RF Backgrounds – MUTAC – 1/13/03 – p.17/ |

### All-copper breakdown model

- Observation (J. Norem): stress  $(T=0.5\epsilon_0E^2)$  can exceed Cu tensile strength at emitter tips
- deforming surface into sharper features, removing chunks
- triggering breakdown
- Molten Cu splashes form more emitters







#### Conclusions

- Pillbox cavity operation shows
  - Absorber heat load not significant
  - Windows can survive dark current
  - MICE detectors can live with projected rates if placed behind hydrogen (at high channel count/cost)
- Surface treatment important for cooling channel
- Need 201MHz prototype for reliable results

#### **Current status**

- Identified useful detectors and measurements
- Physical picture consistent with existing data, refining measurements
- Open-cell cavity results submitted to Phys Rev STAB (first systematic study of high-gradient Cu rf in B)
- Successful pilbox cavity run with Cu windows, encouraging results
- Pillbox being conditioned with Be window, studies in progress

### **Future plans**

- 805 MHz testing with Be windows and grids
- Analysis of windows removed from pillbox
- DAQ integration/commissioning
- Improved understanding of emission phenomena, surface treatment tests
- Simulation of electron transport in channel
- Study effect of field configuration (gradient mode)
- More rate measurements for MICE
- Test 201MHz prototype when available