Progress in Ring Cooler Design

R B Palmer

MUTAC at FERMI 1/14/03

1. Introduction

- 2. Quadrupole Focused
- 3. Bend (weak) Focused
- 4. TETRA: Solenoid Focused
- **5. RFOFO: Alternating Solenoid Focused**
- 6. Conclusion

Introduction to Longitudinal Cooling

- dp/p reduced
- But σ_y increased
- Long Emittance reduced
- Trans Emittance Increased
- "Emittance Exchange"
- Needs Bending for Dispersion
- Suggests a Ring

1) Quadrupole Focused Rings

Fukui, Garren, Kirk et al

Easier to design because of greater experience

Circumference	31 m
Momentum	250 MeV/c
Quad pole field	$2 \mathrm{T}$
RF frequency	$201 \mathrm{MHz}$
RF Gradient	$16 \mathrm{MV/m}$

One of 8 Cells

Transmission = 41%

$$Merit = \frac{Initial \ 6D \ emittance}{Final \ 6D \ emittance} \times Transmission$$

• Limited acceptance from quad focusing Merit Factor = 16 (FS2 was 15)

2) Bend-only (weak) Focused Rings

Fukui, Garren, Kirk et al

- Gradient, or edge focussed, bend magnets focus in x and y
- Strong bends needed for strong focus

Circumference	m	3.4
Momentum	MeV/c	250
Bend Field	\mathbf{T}	3
RF frequency	MHz	201
RF Grad.	MV/m	16
Merit	·	99

- Very small rings
- Good acceptance with ideal fields
- Questionable acceptance with real fields
- Hard to inject/extract

3) TETRA Solenoid Focused Ring

Balbekov et al

Alternate transverse cooling with H2, and emittance exchange in Li wedge

Circumference	36.963 m
Energy	$250 { m MeV}$
$\mathbf{Max} \ B_z$	$5.155~\mathrm{T}$
RF frequency	$201 \mathrm{MHz}$
Gradient	$15 \mathrm{MV/m}$

Performance

• Go	bod	cooling	\mathbf{in}	all	dime	ensions
------	-----	---------	---------------	-----	------	---------

- this was the FIRST
- Merit Factor 38-94 c.f. Study-2: 15

BUT

- Hard edged, non-Maxwellian fields
- Design of bend magnets hard
- Injection and extraction very hard Merit=3.9 with RF gap

	Before	After	Ratio
ϵ_{\perp} (cm)	1.2	0.21	5.7
ϵ_{\parallel} (cm)	1.5~(3)	0.63	2.4(4.8)
$\epsilon_6 (\mathrm{cm}^3)$	2.2	0.028	79~(158)
N/N_0 , inc. decay	1	0.48	0.48
Merit			38 (76)

4) **RFOFO:** Alternating Solenoid Focused Rings

V. Balbekov, J.S. Berg, R. Fernow, J. Gallardo, W. Lau, R.B. Palmer, L. Reginato, D. Summers Y. Zhao

Simple solenoid lattice, RF in dispersion, steep wedge angles

33

200

3

0.125

30

100

201

12

m

MeV/c

 \mathbf{T}

Т

cm

deg

MHz

MV/m

ICOOL Simulation with Maxwellian, almost real, fields

- Fields on axis from straight lattice applied to the curved reference orbit
- Fields off axis from Maxwell
- No Windows
- No Injection/Extraction Gap
- 100 deg wedge absorber

	initial	final	ratio
Trans $+$ decay	1	.54	54~%
$\epsilon_{\perp} ~(\pi ~{ m mm})$	10.7	2.3	1/4.6
$\epsilon_{\parallel} \; (\pi \; { m mm})$	50.1	3.5	1/14.1
$\epsilon_6 \ (\pi \ { m cm})^3$	5.8	0.019	1/302
Merit			162

Details Studied:

- **1. Realistic Fields**
- 2. Effects of windows
- 3. Required longitudinal acceptance
- 4. Realistic Absorber Shape
- 5. Absorber heating
- 6. Injection/Extraction
- 7. Induction Kicker

1) Realistic Magnetic Fields (Balbekov)

Shifted Coils so beam follows field lines

Tilt coils to generate vertical bending field

Plots (similar to those in ICOOL approximation)

Compare Balbekov Simulation with ICOOL approximation Both with wedge angle=76 degrees (c.f. 100 deg.), and Gaussian inputs

		Balbekov	ICOOL
Transmission (inc.decay)	%	55	59
Initial Trans Emittance	(mm)	12	13.9
Final Trans Emittance	(mm)	2.2	2.0
Initial Long Emittance	(mm)	15.8	15
Final Long Emittance	(mm)	4.8	7.4
Merit Factor		55	50

- More long cooling (more dispersion)
- Less Trans cooling (same reason)
- Slightly better performance

2) Windows for absorber and RF

- ICOOL with Maxwellian but quasi-realistic fields
- Input: as in Study 2, but compresed in time to fit ring

• **RF**

- With windows: 6×33 cm cells at 12 MV/m
 - (c.f. Study-2: 4×33 cm cells at 16 MV/m)
- With open cavities: $3 \times 66 \ cm$ cells at 10 MV/m

Window Cases tried:

	Absorber	RF	RF temp
	$\mu {f m}$	$\mu {f m}$	\deg
c.f. Study-2	360 Al	$3 \times 700 + 2 \times 100$ Be	warm
None			-
Thick	360 Al	$5 \times 350^{1} + 2 \times 50^{1} \text{ Be}$	warm
Thin	125 AlBemet	$5{ imes}50^2 + 2{ imes}25^2 \; { m Be}$	nitrogen
Open	125 AlBemet	-	warm
${ m LiH}$		$3{ imes}350+2{ imes}50~{ m Be}$	warm

1. Half thickness of FS2 because heating $\propto~({\rm grad})^2$

2. $\leq 1/10$ at nitrogen temp because expansion coeff $\approx 1/10$

ICOOL simulations

Dots: Study-2 (FS2) (into 150 mm Long Acceptance) Lines: Ring (into 35 mm Long Acceptance)

• Merit very sensitive to windows

- mu/p less sensitive to windows
- Thick windows < FS2 • Thin windows \approx FS2
- Open cavity \approx Thin

3) Required Accelerator Longitudinal Acceptance

- Ring's Long Emittance << FS2
- \bullet So Long Acceptance can be reduced: 150 \rightarrow 35 mm

4) More realistic absorber shape

- ICOOL on quasi-realistic fields
- Using stepped cylindrical approximation of shape
- Merit reduced from 150 to 110
- \bullet Mu/p reduced by $\approx 5\%$

5) Absorber Heating Calculations

- Max merit requires 20 turns
- But max mu/p reached after 8 turns
- Use FS2 bunch parameters
 - -6 bunches with 20 ms separation at 2.5 Hz for 1 MW
 - Continuous bunches with 33 ms separation for 4 MW

P_p	Driver power	MW	1	4
N_p	Protons/bunch	10^{13}	1.7	3.4
$f_{ m bunch}$	Bunches/sec	\mathbf{s}^{-1}	6 imes 2.5	30
Mu/p	"Ave" muons/proton		0.261	0.27
n	Turns in ring		8	8
J	Energy deposited/bunch	J	91	182
σ_r	"Ave" beam radius	cm	3.11	3.11
ΔT	Temp rise/bunch	Deg	0.33	0.67
P	Ave power dissipated/absorber	\mathbf{kW}	1.37	5.48
F	Flow for $\Delta t=2 \deg$	liters/sec	1.45	5.8
v	Vel in 5 cm pipe	m/s	0.74	2.95

These are all reasonable values

6) Injection/Extraction Transverse matching

Design coils to duplicate normal cell fields

Longitudinal matching Gap in RF introduces losses

- \bullet Simulated Merit 150 \rightarrow 90
- \bullet Mu/p reduced by 15 %
- Improvements probable by
 - matching
 - raising energy
 - reducing gap in rf

7) Kicker

Minimum Required Kicker Energy:

$$U \leq \left(\frac{a}{\sigma_r}\right)^4 \left(\frac{a_y}{a_x}\right) \left(\frac{m_\mu^2 8}{\mu_o c^2}\right) - \frac{\epsilon_n^2}{L}$$

- muon $\epsilon_n \gg$ other ϵ_n 's
- \bullet So muon Joules \gg other kicker Joules
- Nearest are \bar{p} kickers

		μ Cooling	CERN \bar{p}	Ind Linac
$\int Bd\ell$	Tm	.30	.088	
\mathbf{L}	m	1.0	${\approx}5$	6.0
В	\mathbf{T}	.30	$pprox\! 0.018$	0.6
\mathbf{X}	m	.42	.08	
Y	m	.63	.25	
$t_{ m rise}$	ns	50	90	40
$\mathbf{V}_{1 ext{turn}}$	\mathbf{kV}	$3,\!970$	800	× 190
$\mathbf{U}_{ ext{magnetic}}$	J	$10,\!450$	$pprox\!13$	10,000

- J is 3 orders above \bar{p}
- Same order as induction
- And t same order
- But V is too high

Induction Kicker solves Voltage problem

- Drive flux return
- Subdivide loops and drive in parallel
- Use cos(theta) distribution gives uniform field
- Conducting box removes stray field return
- No rise time limit
- Not effected by solenoid fields

Mag Amp Driver

- Used to drive Induction Linacs (e.g. ATA or DARHT)
- Switch low current long pulse
- Mag-Amp compresses pulse to high current short pulse

• Non-resonant:

2 Drivers for inj. & extract. 24 \times 2 Magamps (\approx 20 M\$)

• Resonant: 1 Driver, and $2 \times \text{efficient}$ 12 Magamps ($\approx 5 \text{ M}$ \$) Cost Reduction? e.g. RFOFO vs. Study 2

• Study 2 Cooling

2.75 m Cells 1.65 m Cells

• **RFOFO Cooling Ring**

 \bigcirc

	Study 2	Now	Factor
Tot length (m)	108	33	30 %
Acc length (m)	54	37	$21\ \%$
Acc grad	$16 \mathrm{MV/m}$	$12 \mathrm{MV/m}$	66~%

EXPECT SUBSTANTIAL SAVINGS

Conclusion

- Four approaches studied
- With differing approximations, all give 6D cooling
- RFOFO design simulated, though not all together, with
 - Maxwellian fields from real coils
 - Realistic absorber
 - Absorber and RF windows
 - Gap in lattice for injection

BUT

- Absorber heating needs R&D
- Thin windows desirable needs development
- Injection lattice not designed
- Injection kicker requires R&D

Much progress but still much work