Summary

R B Palmer

MUTAC FNAL

Jan 2003

Charge

- 1) Review and comment on the R&D progress achieved during the last year
- 2) Review and give advice on the R&D plans and corresponding budgets for fiscal year 2003, as well as on the long-range R&D directions
- 3) Assess and give advice on plans for the international Muon Ionization Cooling Experiment (MICE), and comment on the relationship between MU-COOL and MICE
 - 4) Assess and give advice on plans for the Targetry program
- 5) Assess the status of the beam simulation effort, especially that aimed at 6D cooling scenarios (e.g., cooling rings)
- 6) Evaluate both the NSF-sponsored and the ICAR-sponsored muon activities and comment on how each fits into the overall MC R&D program.

Each will be addressed, but not in this order

Beam simulation efforts (#5)

- Study I Emphasized Feasibility
- Study II Emphasized Performance 6 times flux
- Current Work Emphasize Lower Cost
- Future Study 3 (In about 2 Years)
- Collider Study (later)

Cost Reduction

*** Reasons for substantial savings on these items
Work on the other items soon

Cost Reduction of Phase Rotation

• Study 2

• e.g. Bunch Beam Rotation

	Study 2	\mathbf{Now}	Factor
Tot Length (m)	328^{1}	166	51~%
Acc Length (m)	269^{2}	35	13~%
Acc Type	Induction ³	Warm RF	

- 1. 18+100+3.5+80+80+47=328
- 2. 100+80+80+9=269
- 3. 260 m induction + 9 m RF

• EXPECT SUBSTANTIAL SAVINGS

BUT

- Not yet matched into cooling
- Not Engineered
- Other options

Cost Reduction of Cooling Rings

• Study 2 Cooling

• e.g. RFOFO Cooling Ring

- Similar transmission
- Similar Trans emittance
- Less Long Emittance

	Study 2	Now	Factor
Tot Length (m)	108	33	30~%
Acc Length (m)	54	37	21~%
Acc Grad	$16 \mathrm{\ MV/m}$	$12 \mathrm{\ MV/m}$	66 ~%

• EXPECT SUBSTANTIAL SAVINGS

BUT

- Need R&D on absorber heating
- Need R&D on thin windows
- Need R&D on kicker
- Not engineered
- Other options

Cost Reduction of Acceleration

• Study 2 RLA

• e.g. Racetrack FFAG

	Study 2	Now	Factor
$oxed{Vac Length^1}$	3261	1094	34 %
Tun Length 2	1494	1094	49 ~%
$\mathbf{Acc}\ \mathbf{Length}^3$	288	102	35~%
Acc Grad.	16	8	50~%
Acc Type	SC RF	SC RF	

- 1. 2 linacs + 4 switch-yards + 7 arcs
- 2. 2 linacs + 4 switch-yards + 2 arcs
- 3. $2 \times 24 \times 4 \times 1.5 \text{ m}$

• EXPECT SUBSTANTIAL SAVINGS BUT

- Match not yet Designed
- More Pre-acceleration required
- Inject/extract not designed
- Other Options

Targetry program (#4)

AGS Experiment E951

- 4 Tp/bunch (4 10¹²)
- Non-Explosive Dispersion
- Good Result

But 1 MW Nu-Factory requires: 16 Tp/bunch (1.6 10¹³)

SO

• NEED FURTHER EXPERIMENT

Target Simulation

Stabilization From Magnetic Field

Cern Observation without beam

Simulation with beam

R. Samulyak

Stabilizing of the mercury jet by the longitudinal magnetic field

- a) B = 0; b) B = 2T
- c) B = 4T; d) B = 6T; e) B = 10T

Magnet changes dynamics: suppresses breakup, increases T

• NEED EXPERIMENT WITH MAGNET

R&D progress and Plans (#1 & #2)

- SC Cavity Progress (at Cornell)
 - -Build new test pit
 - Design, build, and test 201 MHz SC cavities
 8 MV/m achieved
 limited by drop in Q c.f. FS2 spec = 16 MV/m
 Note acceleration designs now below this gradient
- SC Cavity Plans
 - Explore ways of raising the operating gradients
 Note above: this may not be critical

• MuCool Progress

- Design of hydrogen absorbers
- -Design, build, and test absorber windows
- exploring safety requirements
- Construction, and safety testing, of absorber windows
- -High power testing of 805 MHz cavities
- High power testing in a magnetic field
- Measurement of X-rays and dark currents Particularly relevant to MICE experiment
- Construction and radiant heat testing of Be windows for RF
- Design of 201 MHz cavities
- Design and start Test Area

• MuCool R&D plans

- Build, and test hydrogen absorbers (needs Test Area)
 Prototype for MICE
- Test with heating from linac p beam (needs Test Area)
 Particularly relevant for cooling rings
- Continue radiant heat study of thin Be windows for RF as needed for cooling rings
- Continue 805 MHz work on breakdown and dark current
- Test 805 MHz cavities with Be windows
- Design, build, and test 201 MHz cavities (needs Test Area)
 Prototypes for the MICE experiment and for a cooling ring
- Design and construct large SC coil to fit over cavities (needs Test Area)
 Prototype for MICE
- Test 201 MHz cavities in magnetic field (needs Test Area)
 Prototype for MICE

• Long range R&D Plan:

- Build and run "Muon Ionization Cooling Experiment" MICE

Muon Ionization Cooling Experiment (MICE) (#3)

• From last MUTAC:

"The Cooling demonstration is the key systems test for a neutrino factory"

- Solid Design based on Study-2 channel (very similar components to RFOFO cooling ring)
- International Collaboration: (US, Europe, Japan)
- An enthusiastic host lab: RAL (UK)
- Funding proposal sent to NSF, (and similar requests in Europe)
- Finished Proposal

ICAR & NSF Involvement (#6)

The Muon Collaboration provides a model for pursuing accelerator R& D involving many University & Laboratory groups, including both accelerator and particle physicists. We believe this way of pursuing accelerator R& D is succeeding. The support for the University groups from NSF and ICAR has been important for this success.

NSF

- SCRF R& D activity entirely supported by NSF
- Significant results during FY02
- Critical R& D to establish achievable parameters for muon acceleration

ICAR

- Substantial component of the collaboration (15 FTEs!)
- ullet Primary groups spearheading the LH 2 absorber R& D $\,\rightarrow\,$ Substantial progress
- Groups are seamlessly integrated into the collaboration
- Source of (Ph. D. and summer) students!
- Important component of MICE

Conclusion

- The KamLAND's determination of the "Large Mixing Angle" (LMA) solution raises the possibility of measurable CP violation effects and their possible GUT implications. A neutrino factory for their study may become crucial.
- Our design and technical studies, if actively pursued, should lead to an affordable design on a reasonable time scale.
- Even before the KamLAND result, the B&B Sub-Panel had recommenced:

"We support the decision to concentrate on intense neutrino sources, & recommend continued R&D near the present level of 8 M\$ per year"

- Since that time our total funding has dropped a factor of two, and the direct DOE funding for the experimental program has dropped a factor of three.
- We hope you will recommend that MCOG endeavor to get restitution of our funding