

# **MuCool Overview and Plans**

### Daniel M. Kaplan





MuTAC Review Fermilab Jan. 14–15, 2003

# MuCool-related talks at this Review:

#### This afternoon:

| MUCOOL Overview and Plans           | Kaplan       | 30' |
|-------------------------------------|--------------|-----|
| NCRF R&D Program and Plans          | Li           | 30' |
| RF Background Studies and Plans     | Torun        | 15' |
| ICAR Program Overview and Plans     | Morrison     | 10' |
| LH2 Absorber Program and Plans      | Cummings 25' | 25' |
| Cooling Channel Instrumentation     | Errede       | 10' |
| Tomorrow:                           |              |     |
| MICE Overview and Approach          | Blondel      | 45' |
| MICE Technical Update and RAL Plans | Drumm        | 30' |

### **Outline of this talk:**

- 1. MuCool Collaboration and Mission
- High-gradient normal-conducting RF R&D
- 3. High-power LH<sub>2</sub>-absorber R&D
- 4. Gaseous-absorber option
- 5. MuCool Test Area
- 6. Detector R&D
- 7. Simulations
- 8. Support for MICE
- 9. Plans
- 10. Summary

### MuCool Collaboration

18 institutions from US, Europe, and Japan:

#### RF Development

ANL

**FNAL** 

LBNL

Univ. Mississippi

#### Beam Diagnostics

ANL

FNAL

Princeton

Univ. Chicago

#### Absorber R&D

**FNAL** 

KEK

UIUC

Univ. Mississippi

Univ. Osaka

Univ. Oxford

Solenoids

LBNL

### Cooling Experiment

ANL

BNL

**FNAL** 

Fairfield

III

lowa

JLab

LBNL

UCLA

UCR

Univ. Chicago

Univ. Mississippi

### Mission:

- Design, prototype, & bench-test all cooling-channel components
- Make an engineering beam test of a cooling section
- Support cooling demonstration in muon beam (MICE)

### **MuCool Organization**

Acting Spokesperson: Dan Kaplan\*

BNL Contact: Rick Fernow

LBNL Contact: Derun Li

\*Replacement for Steve Geer (following his election as Muon Collaboration co-spokesperson) until a successor can be named

### **R&D** Coordinators:

RF: D. Li, LBNL A. Moretti, FNAL

Absorbers: M. A. Cummings, NIU

Cavity Diagnostics: Y. Torun, IIT

MuCool Test Area: M. Popovic, FNAL

Website: http://www.fnal.gov/projects/muon\_collider/cool/cool.html

# MuCool R&D Projects & Facilities



- Test facilities for the above:
- FNAL Lab G
- FNAL MuCool Test Area
- Simulation studies in support of cooling R&D

### **Key R&D Issues**

- 1. Can NCRF cavities be built that provide the required accelerating gradients, operating in multi-tesla fields?
- 2. Can the heat from dE/dx losses be adequately removed from the absorbers?
- 3. Can the channel be engineered with an acceptably low thickness of nonabsorber material (absorber, RF, & safety windows) in the aperture?
- 4. Can the channel be designed & engineered to be cost effective?

## High-Gradient-RF-Cavity R&D

ANL / FNAL / IIT / LBNL / UMiss

Goal:

201-MHz Cu cavity with > 15-MV/m on-axis accelerating gradient, operable in few-T solenoidal magnetic field

- But rapid progress easier with smaller-scale prototypes → initial tests at 805 MHz
- Pillbox cavity (cells closed with conducting windows) can save  $\approx 50\%$  in peak power
- Open-cell tests were Ph.D. project of U. Cincinnati student V. Wu (now on FNAL staff)

Open-cell 805-MHz prototype under high-power test in Lab G superconducting solenoid







During bake-out last winter at LBL (now under high-power test in Lab G)

# 805-MHz Cavity Emission Studies

Studies with open-cell cavity in 2001 reached 54 MV/m surface field (25 MV/m on-axis accelerating gradient)

- Revealed large dark current, enhanced by solenoidal B field
- Emissions from sparks melted plexiglas and titanium windows
- Paper submitted to Phys. Rev. ST AB
- Tests now in progress with closed-cell prototype  $\rightarrow E_{\text{surf}} \approx E_{\text{acc}}$
- 1st tests with Cu windows,  $B = 0 \rightarrow \text{easy}$  conditioning to 34 MV/m (allaying multipactor concern)
- With B = 2.5 T, conditioning harder, large dark currents
- Now embarking on studies of surface treatment
- →See Li, Torun talks
- TiN-coated Be windows installed last month
- MICE:  $E_{acc} \le 8 \text{ MV/m} \Rightarrow \text{bkg rate manageable}$

Gradient, MV/m



## **Tube Grid Design Studies**

LBNL / FNAL / IIT

- Be windows need to be quite thick (> 1 mm) To handle RF heat load with large (≈20-cm-radius) iris without buckling,
- Grids of gas-cooled Al tubing might be thinner (in rad. len.) & cheaper
- Finite-element-analysis studies in progress at LBNL, IIT
- Thesis project for IIT Mechanical Engineering Ph.D. student M. Alsharo'a under Moretti's direction
- enhancement factor at tube surface (work in progress) Current goal: find manufacturable grid configuration with manageable field

4x4 grid of 0.5-cm x & y tubes field enhancement = 3.6

4x4 "waffle" grid of 1-cm tubes field enhancement = 1.8





### 201-MHz Design Work

A. Ladran, D. Li, R. Rimmer (now at JLab), LBNL

Both electrical and mechanical design essentially complete:



- held up this year for lack of funds

#### Absorber R&D

2D transverse-cooling rate:



$$\frac{d\varepsilon_{x,N}}{dz} \approx -\frac{1}{\beta^2} \frac{\varepsilon_{x,N}}{E} \left| \frac{dE}{dz} \right| + \beta_{\perp} \frac{(0.014 \text{ GeV})^2}{2\beta^3 E m_{\mu} L_R}$$

Competition between energy loss and Coulomb scattering

## ⇒ Absorber material comparison:

Transverse cooling merit factor  $\propto (L_R dE/dx)^2$ 



- Hydrogen is best material by factor  $\geq 2$
- (...all other things being equal, e.g., neglecting effect of containment windows)

## Absorber Power Handling

- Need to handle 100s of watts per absorber in Study-II scenario
- ~ kW with more ambitious Proton Driver (4 MW instead of 1 MW) and/or Neuffer phase rotation (keeps both μ<sup>+</sup> and μ<sup>-</sup> simultaneously)
- $\rightarrow$  ~ 10 kW in ring cooler with  $\approx$ 10 passes
- State of the art is several hundred W in e.g. SLAC E-158 LH<sub>2</sub> target
- Two possible solutions being pursued:

IIT/NIU: Forced-flow absorber with external cooling loop





Power-handling limit yet to be established for either approach

# Progress in Absorber Windows: 1

IIT / NIU / Oxford / UMiss

To avoid compromising hydrogen's low Coulomb scattering, need containment windows as thin as possible:

Windows machined w/ integral

3 iterations of absorber window design:



Developed non-contact "photogrammetry" for window measurement and certification



flange out of single disk of Al alloy

absorber, to satisfy vacuum surrounding safety guidelines for containment Established need



# **Progress in Absorber Windows: 2**

- FNAL requirement for nonstandard LH<sub>2</sub> containment windows:
- Series of 4 windows must be destructively pressure-tested
- This was carried out for windows of the "1st-iteration" design:









- Reliability of photogrammetry established
- Good agreement w/ FEA predictions
- Good agreement w/ strain-gage data
- Good agreement w/ CMM data
- Good agreement w/ micrometer measurements
- → See Cummings & Errede talks



### Gaseous Absorber?

R. Johnson et al., Muons, Inc. / FNAL / IIT

- Idea: why not eliminate (almost) all the windows?
- high-pressure gaseous H<sub>2</sub>, protected against breakdown by the Paschen effect: Cooling channel becomes series of RF cavities (in suitable focusing field) filled with nd (10 18 cm 2)



- Breakdown voltages in hydrogen (Müller, 1966. Figure 8.13. Theory and experiment compared for hydrogen at 28 GHz permission of Springer-Verlag)

  (MacDonald and Brown, 1949. Reproduced by permission of The America Physical Society)
- With low-temp operation, could take advantage of reduced Cu resistivity
- Could lead to higher-performance, shorter, cheaper cooling channel with higher-gradient RF cavities

#### **Current Status**

- Muons, Inc. formed, Phase I STTR funding obtained from DOE (\$100k)
- Goal: Build a test cell and use it at FNAL Lab G to measure the Paschen curve atmosphere range in P (breakdown voltage vs. pressure) of helium (at least) at 805 MHz at 80K over many-
- After some work, solutions found for high-pressure seals

805-MHz test cell designed

Assembly in progress





- Now seeking safety approval for high-pressure test-cell operation
- STTR proposals in preparation for other possible applications of high-pressure RF cavities

### **MuCool Test Area**



- Need facility in which to test
- absorbers
- RF cavities
- solenoids
- Show that cooling cell is operable in an intense beam (engineering test, not cooling demo)
- **3** convenient location: end of Linac has
- sufficient space
- 201 & 805 MHz RF power sources (Linac RF test stands)
- 400 MeV beam up to  $2.4 \times 10^{14} p/s \rightarrow 570 \text{ W}$  in 35-cm LH<sub>2</sub> absorber (higher at lower E)



### MTA Current Status

Demolition of existing access ramp and walls:









Next: excavation begins...

- Hope for beneficial occupancy ≈Fall '03
- Install LH<sub>2</sub> cryo & 201-MHz RF power in FY04 (if funding permits)

#### Detector R&D

Fast-timing detector: A Bross (FNAL) et al.



- $\sigma_t = 6.5$  ps demonstrated! PC stability needs more work \$0 in FY02  $\rightarrow$  slow progress
- Bolometric beam-profile monitor: K. Hoffman (U of C) et al.
- absorber window Principle: muon-beam heat deposition changes resistivity of a film deposited e.g. on
- Slow signal immune from RF noise



Beam test in progress at ANL in 20-MeV electron beam

### **MuCool Simulations**

- Quadrupole-focused cooling channel:
- D. Errede (UIUC), C. Johnstone (FNAL), M. Berz (MSU) et al.
- Quads can be more cost-effective at large  $\beta_{\perp}$  values appropriate at start of cooling
- Might be compatible with SC RF, reducing RF power cost



- Geant Study-II simulation with realistic windows: Y. Torun, T. Roberts (IIT)
- performance (not obvious  $\rightarrow$  window was thinner at center but much thicker at edges) 1st study confirmed that "iteration 2" window design was improvement over Study-II
- Code improvements in progress (speed, usability)
- Result imminent with "iteration 3" design including vacuum windows
- MICE Geant simulation:
- IIT's Y. Torun serves as MICE co-team leader for simulations (as well as Webmaster and Steering Group Secretary)
- Developed Geant4 framework and coordinated contributions from other collaborators



## MuCool support for MICE

- ⇒ MuTAC advised seeking int'l participation Cooling demonstration too ambitious for any one of world's regions
- Strong interest in cooling exp't in EU, UK, Japan as well as US → see Blondel, Drumm talks
- Attitude of funding agencies TBD
- MuCool Collaboration is providing to MICE
- concept development (MICE based on Study-II cooling channel)
- engineering integration
- simulations
- RF cavity development & testing
- absorber development & testing
- fast-timing detector (will permit detailed exploration of longitudinal phase space)
- How to draw the line between MuCool & MICE
- MuCool will prototype & test each piece of cooling hardware, including MICE pieces for which we are responsible
- "Production" units for MICE will be built with MICE funds
- "one muon at a time" cooling demo -> both are essential! MuCool engineering & high-intensity tests fully complementary to MICE

#### Plans

- breakdown Continue 805-MHz tests to determine how best to minimize dark current &
- Finish MTA construction in FY03
- Start building 1st 201-MHz cavity prototype in FY03
- Install MTA absorber cryo support and/or 201-MHz RF in FY04 as funding
- Carry out 1st test of absorber with LH<sub>2</sub> fill
- Carry out 1st test of 201-MHz cavity
- Test absorber in dark-current flux from cavity
- available (FY05?) Build coupling-coil prototype (surrounds RF cavities) when funding
- Install 400-MeV p beamline from Linac when funding available (FY05?)
- Test absorber power-handling capability
- Test cavity in solenoid irradiated by intense beam
- Test complete set of integrated cooling elements in intense beam

#### Summary

- Continued progress developing components for a cooling channel (slowed but not stopped by FY03 DOE funding cut)
- Ongoing 805 MHz RF R&D program developing techniques required for low-dark-current, high-gradient NCRF cavities operable at high B
- Healthy progress developing LH<sub>2</sub> absorbers with thin windows (largely funded by State of Illinois via ICAR)
- MuCool Test Area under construction
- Contributed to MICE Technical Proposal and MICE NSF proposal
- Opportunities for Ph.D. and M.S. students in beam physics & engineering
- already 1 Ph.D. & 1 M.S. completed, 1 Ph.D. in progress
- Benefiting from international collaboration
- Japan contribution to absorbers
- UK contribution to absorber windows
- Cooling experiment proceeding via international MICE Collaboration
- Rate of continued progress will depend on budgets in FY04 and beyond