Acceleration of Electrons in the NSLS-II

T. Shaftan for the NSLS-II teamMy colleagues: R. Heese, I. Pinayev,D. Raparia, J. Rose

NSLS-II: High-brightness electron and photon beams

NSLS II Machine Concept

- New Electron Storage Ring
- Ultra Low Emittance (<1.0 nm)
- Damping wigglers
- ✤ Medium Energy (~3 GeV)
- ✤ Large Current (500 mA)
- Top-Off Operation
- ✤ Short-period Undulators
- ✤ Circumference (~800 m)

Challenge is to transform the machine concept into a design!

- Lattice & Tracking: Dynamic aperture, optimal machine layout
- ✤ SCU: Design & measurement, heat load, …
- ✤ Impedance Budget: Small gap ID tapers, etc
- ✤ Top Off Ops: multi-bunch injection, booster design, etc.
- Project is evolving: this talk shows only current situation!

NSLS-II Site

T. Shaftan, FFAG Workshop, 5-17-06

Facility Features

- Site Features
- ✦Glacial sand

Largely undeveloped

NSLS II: Ultra Low Emittance Ring

X-Ray Brightness

T. Shaftan, FFAG Workshop, 5-17-06

NSLS-II parameters (current DBA-32)

Energy	3.0 GeV	Betatron Tunes H/V	35.71/21.37
Circumference	929 m	Energy Spread	~0.1%
Number of Periods	32DBA	RF Frequency	500 MHz
Maximum ID Length	5 m	RF Bucket Height	~3%
Emittance	1.5-0.5nm	RMS Bunch Length	~15 ps
Betatron Coupling	0.5%	RF Voltage	~4 MV
Momentum Compaction	.00033	Maximum Current	500 mA
Dipole Bend Radius	15-30 m	Current per Bunch	0.4 mA
Beam Size (σ_x, σ_z)	61, 2.6 µm	Charge per Bunch	1.25 nC
Beam Divergence(σ_x ', σ_z ') 16, 2 µrad			

NSLS-II Injection Specs

NSLS-II injection scenario

NSLS-II injection parameters

Parameter	X-ray ring
Energy, GeV	3
Circulating current, A	0.5
Circumference, m	936
Revolution period, µs	3.12
RF frequency, MHz (wavelength, m)	500 (0.6)
Circulating charge, µC	1.56
Total number of buckets	1560
Number of filled buckets	1560· ⁴ / ₅ ≈1280
Charge per bucket, nC	1.22
Current per bucket, mA	0.39
Lifetime, min	~180
Interval between top-off cycles, min	1
Current variation between top-off cycles, %	0.55%
Current variation between top-off cycles, mA	2.7
Charge variation between top-off cycles, nC	8.6
Damping time, ms	75

Top-off scenario

- Many (~1000) bunches
- Multi-bunch mode
- Filling N_M consecutive buckets in the ring
- 1 minute between top-off cycles
- 1 Hz repetition rate suffices with pulse train injection
- Kickers duration can be 2 turns long (5 usec) or longer
- Considered in ALS top-off (10 bunches)

Multi-bunch injection

- Short lifetime \rightarrow multi-bunch mode
- SLS experience: feedback for enhancement of the bunch pattern purity
- "Hunt&Peck" mode: is it necessary for NSLS-II ?
- Studies at ALS on pattern evolution
- "Flat-top ramp" mode in the booster → short pulse kickers

"Hunt&Peck": Adjusting average value

- Measure charge in the ring buckets
- Every top-off cycle adjust gun grid voltage → adjust charge per bunch
- Inject macropulse (N bunches) with average charge equal to missing charge in N-bunches in the ring
- Eliminates all bunch-bunch variations on $N_b > N_{MICRO}$ scale
- Can be done is "sequential" or "hunt & peck" modes

"Hunt&Peck": Fast modulation of macropulse

- Measure charge in the ring buckets
- Modulate gun voltage (laser intensity) with inverse of the charge/bunch in the pattern

or

- Stack bunches in the booster via multiple injections
- Inject "premodulated" macropulse into the ring

Injection straight-section

- Closed non-interleaved
 bump design
- Fits into a single straight section of the ring
- 2-turns long pulsed kickers
- Sufficient injection tolerances providing high injection efficiency
- Minimization of injection transients effect on stored beam
- Damping time is ~75ms (no damping wigglers)

Injection geometry near septum

T. Shaftan, FFAG Workshop, 5-17-06

Phase space for 6 turns

Storage ring stay-clear

- TRACY was modified to include injection tracking
- Tracking with 3 injected beam emittances (10, 30 and 100nm)
- Beam envelope is recorded at each element of lattice
- Linear estimate (black curve) is determined by septum and ID gap
- Stay-clear aperture required for injection
- Next step: including field errors, RF cavity, etc.
- Injection tolerances: limits on misalignments/mismatch of injected beam

Courtesy of J. Rose, I. Pinayev, J. Bengtsson and T. Shaftan

Horizontal. Beam is injected at an initial displacement of about 17.5mm (septum location).

Figure 2) Injected beam envelope (Vertical). Physical aperture at ID ½ gap of 2.5mm

ASP booster (Danfysik)

- Energy: $0.1 \rightarrow 3 \text{ GeV}$
- Rep. Rate: 1 Hz
- Circumference: 130 m
- RF frequency: 500 MHz
- Emittance: 30 nm rad
- Radiation loss: 743 keV/turn
- Beam current: >5 mA
- Magnet power: 240 kW

Full-energy booster

<u>Compact booster</u>

 24-cell TME lattice with 4 dispersion suppressors

- Two 10-m straights for RF and injection and for extraction
- Single dipole power supply
- Requires building of NSLS X-ray ring size
- <u>"Same-tunnel" booster</u>
- Same circumference as the main ring
- 64-cell TME, 10 m between dipoles
- Require additional families of quadrupoles and sextupoles
- 8 "small" dipole power supplies
- Requires rearrangement of the lattice for optimization

Booster comparison

Parameter @ 3.6 GeV & 1Hz	"Compact" booster	"Same tunnel" booster
Dipole	13.8°, 1.0 T, 2.9m, 15cm, 2.5cm, 10 turns, 2.5e ³ mm ² , 4.8 mΩ, 10 mH	5.625°, 0.8 T, 1.5m, 15cm, 2.5cm, 12 turns, 165mm ² , 4.6 mΩ, 7.5 mH
Total peak power	Active 120 kW Reactive 525 kW	Active 8 x 16 kW Reactive 8 x 52 kW
Voltage x Current from PS	650V x 1.0 kA	8 x 100V x 680A
Booster current in top- off	13 mA	2.8 mA
SR losses	1.25 MeV/turn, 16 kW	1 MeV/turn, 2.8 kW
Cavity Voltage, RF acceptance	2MV, 0.9%	2MV, 0.9%

NSLS II Tunnel

NSLS II Tunnel

Conclusions

- NSLS-II project is in progress
- This talk is about current situation of the project!
- Effort of the NSLS-II Team

