FFAG for next Light Source

Alessandro G. Ruggiero Semi-Annual FFAG-2006 Workshop May 15 - 19, 2006

May 15-19, 2006

A.G. Ruggiero -- Brookhaven National Laboratory

FFAG Rings for Acceleration and Storage

FFAG's have large Momentum and Betatron Acceptance. And are DC

A.G. Ruggiero -- Brookhaven National Laboratory

FFAG Rings at Injection

FFAG

Circumference, m	807.091
Periodicity	136
Period Length, m	5.9345
Long Drift S, m	2.5345
Short Drift g, m	0.300

F-Sector Magnet

Length, L _F , m	0.700
Bend Field, kG	
Gradient, kG/m	
D-Sector Magnet	
Length, L _D , m	1.400
Bend Field, kG	
Gradient, kG/m	

Phase Advance / Period, H / V	105º / 100º
Betatron Tunes H / V	39.76 / 37.75
Transition Energy, $\gamma_{\rm T}$	-i105.5
Max β value, H / V, m	4.9 / 11.8
Max dispersion, η	6.0 cm
Chromaticity, H / V	-0.925 / 1.814

May 15-19, 2006

4/10

FFAG-1 1 - 2 GeV

5

0.8

5/10

4

6

FFAG-2 2 - 4 GeV

4

з

2

1

0

-1

5

0.8

6/10

4

6

FFAG-3 4 - 8 GeV

7/10

May 15-19, 2006

A.G. Ruggiero -- Brookhaven National Laboratory

The Storage Period 460 µs is smaller than Damping Time 870 µs No Quantum Fluctuation Effects !!

eRHIC: 10-GeV e x 250-GeV p or 100-GeV/u Au

May 15-19, 2006

A.G. Ruggiero -- Brookhaven National Laboratory

9/10

Final Energy 8 GeV Average Current 10 mA **Beam Power** 80 MW Power Loss during acceleration 8% No Quantum Fluctuations Beam Brilliance at the Source preserved No Space Charge No Tousheck Lifetime FDF Triplet Lattice ideal for SR 2.5 m Drifts for RF Cavities and Insertion Devices Very reasonable SRF system

May 15-19, 2006 A.G. Ruggiero -- Brookhaven National Laboratory

Conclusions