
 

 

 

FREE ELECTRON LASER THEORY USING TWO TIMES GREEN FUNCTION FORMALISM 

 

HIROSHI TAKAHASHI 

 

Brookhaven Natioanal Laboratory 

Upton New York, 11973 

 

 

In this paper, we present a quatum theory for free electron laser obtained by firstly using the Two time’s 

Green Function method developed by Matsubara for solid physics theory. The dispersion relation for the 

laser photon obtained  is limited to the case of low intensity of the laser due to the decoupling the 

correlation function in low order. For the analysis of the self-amplified emission (SASE), the high intensity 

laser radiation which strongly affect  the trajectory of the free electron is involved, the use of the classical 

approximation for laser can formulate the laser radiation with multiple frequency. To get the quantum 

effects in the high intensity laser, use of the perturbation theory, and the expansion methods of state 

function using the coherent, squeeze and super-radiant states have discussed.  

 

1. Introduction  

 

The classical formalism for an electro-magnetic field has been used to formulate a theory for  the free 

electron laser  Because the electron beam used for the free electron laser was not very well refined in the 

past, its formulation by using  quantum mechanical formalism was not required. However due to the recent 

refinements of the electron  particle beam used for the free electron laser, it is necsessary to formulate a 

theory and to it give a good foundation by taking the quantum effect into account the Twenty years ago, I  

derived  a quantum theory based on the two times Green function formalism derived by Matsubara for solid 

physics theory[1]. The dispersion relation is compared with the classical theory obtained by Kwan[2] . 

When a relativistic electron moving in a electro-magnetic field and  the magnetic field B , The Hamiltonian 

for such a system may be writteen as  

seeriiicH HHHmcceApi ++++−⋅∑= ))/( 2( βα  

                     H = ∑i ( c αi.(p i- -eA/c) + βi mc2 ) +Hr + H ee +Hs                          (1.1) 

 

where A is the sum of the vector potential As of the B-field and the vector potential Ar of the 

electromagnetic wave; A =As +Ar, m and c are the mass of the electrons and the speed of light, 

respectively, while  α and β are the Dirac matrix operators, the suffix stands for the ith particle. H r is the 



Hamiltonian for the electromagnetic wave. Hee is the Hamiltonian for the  interaction between electrons , 

and Hs  is the Hamiltonian for the Static magnetic field. The last Hamiltonian, which is the constant of 

motion, is not incorporated in the dynamic of the system; it can thus be neglected in the following 

derivation.  

 

The Hamiltonian Hee and Hr are given by  
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                      Hee = ∑ i>j  e2 /rij,  (1.2) 

 

                      Hr = ∑ qλ h ωq b+
q,λ b q,λ   (1.3) 

 

where b+
q,λ  and  b q,λ are the photon creation  and annihilation operator, respectively, for photon 

momentum h q and polarization state λ. . The photon energy is given by h ωq = hcq. The unperturbed 

system is described by an electron moving in the B-field and the free radiation. Hamiltonian for the 

unperturbed system is  

re HHH +=0  

 

                      H 0=H e + H r                (1.4) 

where  

∑ += λ λλωq qqq bbhH ,,

                      He  = ∑i ( c αi(pi- -eAsi /c) + β i mc2 )       (1.5) 

 

        The interaction Hamiltonian is expressed as     

 

                           H int  = - ∑i e αiA ri+_Hee   (1.6) 

 

For simplicity we consider the B-field to be periodic with spacing d in the direction, and having no spacial 

dependence in the transverse (x-y) plane . Hence it will be described by 

 

                                 B0⊥ =  B0(excos K0z +  eysinK0z)     (1.7) 

 
where K

0
 = 2 π/ d. 

We note that He is invariant under all transformations in  the transverse plane and discrete translations in the z direction 

corresponding ti the periodicity of the field. This results in the Bloch type solution  

ψ k (r ) = e ikr u k (z)                                                   (1.8) 



 

where u k (z) has the same periodicity as the static magnetic field. It is importatn to note that the function    

is a four component spinor  

   

     u k (z) = ∑ K=+-K0 CKk,e ik.z                                      (1.9)  

 

where C is a free electron spinor with an energy eigenvalue 
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 To derive the dispersion relation of the free electron laser, the Hamiltonian of the relativistic electron 

moving in a electron-magnetic field and he magnetic field B may be written as The second quantization 

formalism for the Hamiltonian for the unpertubed system can be obtained eq,(2.4) , as follows ; as 
 



                     H = ∑ kσ T kσ a+
kσ a kσ + ∑ k qλhωqλ b +q,λ b q,λ           (1.11) 

 

where a+
kσ is the electron creation operator for the electron momentum hk and spin  σ, akσ    is the 

corresponding annihilation opertor, and T k, is its energy . The interaction Hamiltonian can be expressed by  

                         

                     H int= ∑k2k2q;σ1,σ2 M k1k2q,σ1,σ2λ a +q,λ(t) (b+
q,λ + b q,λ )  

 

                     + 1/2 ∑ k1k2k3k4,σ1,σ2V k1k3k4k2,σ1,σ2σ2σ1(t) a+
k3,σ2 (t)a k4,σ2(t)a k2,σ1(t)         (1.12) 

 

The first term is due to the electron creation-photon interaction with   

 

M k1k2q,σ1,σ2λ =  -e √[4 πc h /2 ωq,λv] (2π)2(δ(k 1x-k 2x +q x ) δ(k 1y-k 2y+q y ) N ∑ K0
 K=-K0  

 

        (δ(k 1z -k 2z +q z, K) F (k 1 k 2 , σ 1 σ 2 )                                    (1.13) 

 

In equation (1.25), N the number of spacing, is derived from the    

 

2. The Green function of the photons 

 

The propagation of the phton in this system can be obtained by solving for Green’s function of the photon.  

 

The one photon retarded Green function can be wriiten as  

 

G q,λ(t-t’) =< A q,λ(t); A q,λ
+(t’)>>       = -i θ(t-t’)<[ A q,λ(t); A q,λ

+(t’)]>  (2.1) 

 

And where <> denote the statistical average. 

 

Where  [C,D] = CD –DC, 

 

θ (t) =1 for t>0, and     =0  for t<0,  (2.2) 

 

A q,λ =  b q,λ +b+ 
q,λ    (2.3) 

 

and where <,> denotes the statistical average  

 



To obtain the equation of motion for Green’s function , we consider the equations of the motion for the 

creation and annihilation operators of the photons and electrons from the Hamiltonian defined in eqs. ( ) 

and (): 
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ih ∂Aq,λ(t)/∂t = [Aq,λ(t), H} = hωq,λ(b q,λ(t)-b+q,λ(t))     = hωq,λB q,λ(t) (2.4) 
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where     H =H0  +H int (2.5) 
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                ih ∂Bq,λ(t)/∂t = [B q,λ(t), H] = hωq,λAq,λ(t) +∑ k3q1,σ3λ1 M k2k3q1,σ2,σ3λ1a       

 

                                    a+q,λ(t))aq,λ(t) (2.6) 
 

)7.3(),()()()()()()(
)(

122423
1221

2431

2
432

1
22

22
21

211111

11
,

, tatatakVtAtaMtaT
t

ta
i kkkkkkk

kkkqk
qkqkkkk

k
σσσ

σσσσ
σλσ

λσ
λσσ

σσ
σ +∑∑ +−=
∂

∂
h  

 

                ih ∂ak1,σ1 (t)/∂t = [ak1,σ1 (t) , H]  = Ta k1,σ1a k1,σ1(t)- +∑k2q2;σ1, 2λ M k1k2q,σ1,σ2λ a  

 

aq,λ(t)Aq,λ(t) +∑ k2k3k4,σ2V k1k3k4k2,σ1,σ2σ2σ1(t) a+k3,σ2 (t)ak4,σ2(t)ak2,σ1(t) (2.7) 
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ih ∂a+k2,σ2 (t)/∂t = [a+k2,σ2 (t) , H]  = -Ta+k2,σ2(t) +∑k1q;σ1,λ1 M k1k2q,σ1,σ2λ a+kqk1σ1(t)Aq,λ(t) 

 

+∑ k1k3k4,σ2V k1k3k4k2,σ1,σ2σ2σ1(k) a+k3,σ2 (t)a+k2,σ1(t)ak4,σ2(t) (2.8) 
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2) G   (t-t’) = 2 ωq,λh2 kδ(t-t’) + ωq,λh ∑k1k2σ1;σ2 M k1k2q,σ1,σ2λ Gk1 σ1k2,σ1;qλ(t-t’), (2.9) 
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where        Gk1 σ1k2,σ1;qλ(t-t’)= << , a+k1,σ1 (t)ak2,σ2(t); a+k3,σ2 (t) Aq,λ+(t’)>> (2.10) 

 

To solve eq.(2.9), the equation of motion for the Green’s function defiend in eq.(2.10) is obtained by  

differentiating it with respect to time t as sollows; 
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ih ∂Gk1σ1k2σ;qλ (t-t’)/∂t = (-Tk1σ1+ T2σk2) Gk1σ1k2σ;qλ(t-t’) 
 



 

+∑ k3q1,σ3λ1 M k2k3q1,σ2,σ3λ1 << a+k1σ1 (t)a+k2σ2 (t) Aq1,λ(t); Aq,λ+(t’) >>  

 

-∑ k3q1,σ3λ1  M k3k1q1,σ3,σ13λ1 << a+k3σ3 (t)a+k2σ2 (t) Aq1,λ(t); Aq,λ+(t’) >> 

 

+∑ k3,k4,k5,σ3,k V k5k3k4k1σ1σ3,σ3,σ1(k)<< a+k5σ1 (t)a+k3σ3 (t) a k4σ3 (t)a k2σ2 (t); Aq,λ+(t’) >>  

 

-∑ k3,k4,k5,σ3,k Vk2k3k4k1σ2σ3,σ3,σ2(k)<< a+k1σ1 (t)a+k3σ3 (t)ak4σ3 (t)ak5σ2 (t); Aq,λ+(t’) >>  

 

 (2.11) 

 

By successive differentiation of the Green’s function with respect to t, hierarchy of equations is obtained. 

In order to close the hierarchy equation, we approximate the higher order Green’s function by expressing it 

in terms of the low order Green’s function. The de0coupling of the higher order Green’s function is carried 

out as follows: 

 

<< a+k1σ1 (t)a+k3σ3 (t) Aq1,λ(t); Aq,λ+(t’) >>≅ 

 

δk1,k3δ σ1,σ3n k1, σ1δ q1;q δ λ1;λ<< Aq1,λ(t); A q,λ+(t’) >> (2.12) 

 

where n k1, σ1=< a+k1σ1 (t)a+k3σ3 (t)> is the density of electrons with momentum h k1 and spin σ1. 

 

<< a+k5σ1 (t)a+k3σ3 (t)ak4σ3 (t)a k2σ2 (t); Aq,λ+(t’) >> ~ 

 

δk5,k2δ σ1,σ2n k2, σ1<< a+k3σ3 (t)a+k4σ3 (t); Aq,λ+(t’) >>  

 

-δk5,k4δ σ1,σ3 n k4, σ1<< a+k3σ3 (t)a+k2σ2 (t); Aq,λ+(t’) >>  

 

-δk3,k2δ σ3,σ2n k1, σ1<< a+k3σ3 (t)a+k2σ2 (t); Aq,λ+(t’) >> (2.13) 

&&&&&&&&&&&&&&&&&&&&&&&& 
 

 

 

 

 

 

 



The first term on the r. h.s. of eq.(2.13) contribute to the direct Coulomb interaction; the second and third 

terms contribute to the exchange Coulomb interaction. 

 

The fourier components of the equation of motions for the Green’s function (2.13)  

G k1σ1k2σ;qλ(ω)  is thus obtained as 

 

(h ω+Tk1σ1 -Tk2σ2) G k1σ1k2σ;qλ(ω) =  

 

∑k 4πe2/k2[nk2σ2 H (k1, k2,k, σ1 )- nk1σ1 H (k1, k2,k, σ2) ], x∑k3,k4 H* (k3, k4,-k, σ3 )  

 

G k3σ3k4σ3;qλ(ω) +(nk2σ2- nk1σ1) Mk2k1q;σ2σ1λ Gqλ (ω). (2.14) 

 

Solving eq.(2.14) and substituting it into eq. (2.9), we obtain the equation of motion for photon Green’s 

function:  

 

[[ h2 (ω2-ωq,λ
2) -hωq,λ⎨ ∑k3,k4 σ1σ2 Mk1k2q;σ1σ2λ (h ω+Tk1σ1 -Tk2σ2) –1 

 

∑k [H (k1, k2,k, σ1 ) nk2σ2 - H (k1, k2,k, σ2)nk1σ1  ], x  

 

(4πe2/k2))[ 1 +4πe2/k2 ∑k3k4 σ3  [nk4σ3 - nk3σ1] (h ω+Tk1σ1 -Tk2σ2) –1 

 

 ⎢H (k1, k2,k, σ2)⎢2 ] -1/∑k3,k4σ3 H* (k3, k4,-k, σ3 ) Mk4k3q, σ3σ3λxx(nk2σ2-nk1σ1)  

 

(h ω+Tk1σ1 -Tk2σ2)-1 + ∑k1,k2q;σ1σ2λ⎜Mk4k3q, σ3σ3λx⎜⎜2(nk2σ2- nk1σ1) (h ω+Tk1σ1 -Tk2σ2)-1]]  

 

Gλq (ω) = h2ωqλ/π (2.15) 

 

The term [   ] on the r.h.s. of eq. (2.15) account for the Coulomb shielding factor for the photon-electron 

interaction . In the case of a weak B –field, the primal process ( K=0) is predominant in the Coulomb 

interaction, and H (k1, k2,k, σ2) can be approximated by the δ function,  δ(k1-k2+k).  

 

ω2-q2c 2 -ω2p/2γ [1/4( hq2 /mγ)2 /( ω-qV)2- 1/4( hq2 /mγ)2 ] 

 

= ω2
p ω2

p /4γ3 ∑k=+-k0(((q+K)/K)2[(ω-(q+K).Vb)2 - 1/4( h(q+K)/mγ)2 +ω2
p /γ] -1    

 

((4.17) 

 



[ω2-q2c 2 -ω2
p/γ] = 

 

 [1/2ω2
p ω2

ce /γ5(q+K0)2/K0)2 [(ω-(q+K0 ).Vb)2-ω2
p /γ3 ( 1+3(q+K0)2)λD2 ])] -1     (2.18) 

 

3. Classical Theory 

 

Although I formulated the quantum mechanical theory for the free electron laser,  it was limited to a low 

intensity laser because of the approximation used to decouple the higher-order correlated function of 

Eq.(2.12). Hence, it could not be applied for the large intensity amplification of the laser,  such as the self 

amplified spontaneous emission (SASE) mode,  which produces a high-intensity laser from the small noise 

signal or input signal.  

 

To formulate a theory for a high intensity laser, the higher correlated function should not be decoupled as in 

eq. (2.12 ). Further, the equation of the motion of the high-order correlated Green function should be 

obtained by differentiating it the same way as in Eq. (2.9  ). This differentiation creates  a correlated 

function of a much higher order. By  successively differentiating  them,  a correlated function  which is of a  

higher order than the previous one can be derived. Since the higher correlated function becomes smaller as 

the order increases, by decoupling the higher order’s functions as products of the lower correlation ones, 

similar to eq. (2.12 ) succesive simultaneous equations can be closed.  However, it is difficult to solve the 

simultaneous equations  analytically; therefore  a numerical method using  a computer might be required,  

although  it poses  the problem how to  integrate these  continuous functions.  

 

To obtain the closed form of the correlation function, the use of the classical description for the EM field  

greatly simplifies the formula. When the laser intensity is high, and the  number of photons associated  with 

this laser intensity becomes large, their photons are not correlated,  such that their phases are randomly 

distributed,  and the EM field can be treated as classical one. Although the photons are not correlated each 

other,  the high -intensity laser affects to the  trajectory of electrons, the laser produced from the emission 

from the electrons  is  very much affected by this high-intensity laser. In analyzing  electron plasma under 

such a high -intensity laser field, I derived the Green’s function of electrons by treating the EM wave as the 

classical one. In this formalism without a lengthy integration of  the simultaneous equation,  as used in the 

above, the intense laser field with multiple of the frequency are simply calculated from the formula of the 

electron’s  correlated function,. However, the highly correlated photon is not taken into account this 

classical formula, and the delicacy of the coherence  due to quantum  effects is also totally discarded.  

 

When the EM is treated as classical field A(t), the wave function of the electron can be expressed as 
 



ψ (i)(r,t) = c(i) exp (ik(i) r –i /(2m(i)) ∫0t⎢k(i) + q(i) A(t’)⎢2dt    (3.1) 
 

 

The total Hamiltonian H  is expressed as  

 

H = ∑s⎨∑s (1/(2m ) (k(i) + q(i) A(t) )2  - EF(i) ) +1/2 ∑s,t V(i,i) (rs –rt))⎬ + ∑s,t(i≠j)∑s,tV (rs –rt))     (3.2)  

 

where Vs are the Coulomb interaction hamiltonians.  

 

In this Hamitonian, hamitonian of electron is expressed by  1/(2m ) (k(i) + q(i) A(t) )2    which include the  

 

classical vector field A(t) 

 

The density operator of the i-th particle is expressed in the second quantization formalism as  

 

ρ (i)(r,t) =  ψ* (i) (r,t) ψ(i)(r,t)= ∑k1,k2  ak1  (i)exp( ik (i) 1  r) ak2  (i)exp( ik (i) 2  r )   (3.3) 

 

The Fourier transformation of the density correlation function operator <ρ(i)(r,t) , ρ(i)(r,t) > can be 

expressed by  

 

∫∫ dr dr’ <ρ (i) (r,t) , ρ (i) (r,t) > exp( ik (i) (r-r’) = ∑k1,k2σ1σ2  <a*k1σ1  (i)(t) ak1σ1  (i) (t)a+k2+kσ2  (j) (t’)ak1σ 2 (j) (t’) 

> 

 

(3.4)  

 

       Fourier Transformation of Green’s functions  

 

 Gk1σ1  (i,j)(k, t-t’) = = ∑k2,σ2  <<a*k1σ1  (i)(t) ak1σ1  (i) (t)a+k2+kσ2  (j) (t’)ak2 σ2 (j) (t’) >>      (3.5) 

 

and the vector potential A(t) is sum of many modes as  

 

A(t)= ∑s  [ Axs  cos ( ωst+ θs)+ Ays  sin ( ωst+ θs) ]       (3.62) 

 

then, Fourier Transformation of Green’s functions Gk1σ1  (i,j)(k, E) can be obtained  as  

 

            Gσ1
(i,j)(k, E+∑sksωs ) = ∑k1Gk1σ1

(i,j)(k, E+∑sksωs )  



  

=          ⎨Πs∑LsJL-Ns J(zs (i)s) ∑MsJL-Ms J(zs (i)s) exp [-i(θ s- -∆ s ) (N s- -M s )]⎬ 

 

⎨ Lσ1
(i,)(k, E+∑sksωs ) δij + (4π/k 2) q (i)L(i)( k, E+∑sksωs ) ∑j’≠ i  (q(j’)   G  (i,j)(k, E+∑sksωs )  

 

+- (4π/k 2) q (i)2 Lσ1
(i)ex ( k, E+∑sksωs )Gσ1

(i,j)(k, E+∑sMsωs )⎬      (3.7) 

 

where  

L k1σ1  (i)( k, E) =  (nk1σ1 (i) - nk2 σ2 (i) ) / (E +Tk1σ1 (i) - Tk2 σ2 (i) ) 

  

Lσ1
(i)( k, E) =∑ k1L k1σ1

(i)( k, E)  L(i)( k, E) =∑ σ1L σ1
(i)( k, E)  

 

Lσ1
(i)ex ( k, E) =[ 1/k2 ∑k1 1] –1 ∑ k1k2 1/(k2-k1)2  L  k2σ1

(i)( k, E)    (3.8)    

 

4. Perturbation Theory  

 

One way to save partially the quantum effect on the laser is to use the  perturbation method by treating a 

vector potential Aem associated with EM field  as sum of a classical field Ac and the Ap. By treating Ap as 

the operator-expressed  creation and annihilation of the photons, the quantum effects on the high-intensity 

laser can be analyzed as in the first paper, where the vector potential A was composed of the wiggler field 

Aw and the photon fields. By adding the classical  vector potential Ac  to the wiggler vector potential,Aw , 

we can deal with high intensity laser in a similar  way as  adopted the first paper. 

 

5.  Coherent , Squeeze, and Super-Radiant  Theories 

 

Another way to deal with this problem is to use the coherent state description which gives the sound  

foundation of  the classical formula.  

 

The coherent state is defined as   

 

⎜α> = exp (-⎜α⎜2/2)∑n=0 to  inf αn/√n! ⎢n>    (5.1) 

 

Here     ⎜n> =1/√n! (a+)n ⎢ϕ0>,   ⎢ϕ0> = ⎜vacume  state>    (5.2) 

      is  the eigen state of th number operator  N=a+ a  containing light quanta of ( k, η). For  our 

consideration  it is useful to split a+ and a  into a sum of Hermitian  opertors i.e. 

   

a = ( u+ip) /√(2h)    a+ = ( u-ip) /√(2h)  (5.3) 



 

Coherent state  αa > is the eigen state of the non-Hermitian annihilation operator a with the complex eigen 

value α =( u+ip) /√(2h)  

 

If this complex eigen value αa , which labels the coherent states runs over the whole complex plane, the 

coherent states becomes over-complete for the Hilbert space. Such an over-complete sets of the coherent 

states  can not be used for our consideration because  they are linearly dependent. However, Bargmann  al. 

and Perelomov proved that  subset of the over complete sub-state form a complete set.  

 

This subset is given by 

 

{ ⏐α > : α = √π  ( l +im) ; l = 0,+-1, +-2,; m= = 0,+-1, +-2,……}  (5.4) 

 

This fact was originally stated by von Neumann, without proof.  Therefore these states are called von 

Neumann lattice coherent state(VNLCS). 

 

Using the VNLCS state, Toyoda et al [4] provide the sound foundation of the classical formalism for the 

high intensity photon field.  

 

This discretization introduces the uncertainty principle of quantum formulation, the delicacy of the 

quantum effect on the theory such as the super radiant state and the squeeze states which is prominent in 

the quantum theory of the laser can be studied as discussed as the paper on   . 

 

⎯The one of advantage of using these coherent state description is a many modes created by the EM field  

can be formulated without difficulty.  Further more another transition associated with the super-radiant and 

between squeezed state can be formulated by including it in the eigen values α,  

 

The squeezed states which might be created by the free electron laser is described by the u or p in the 

Eq.(5.3)  

 

 As mentioned in the state can be expanded by including the these squeeze or super –radiant state, we can 

formulate the free electron theory which has effect of the these states.  
 This coherent state is over complete state and the some dicretalization is needed to reduces the over-completeness to 

the conventional completeness. Here the uncertainty of the quantum description is comes in.  
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The detail discussion of the  

 

As discussed in the use of the coherent state description, the state vector expressing the EM field can be 

expanded by the coherent state.  

 

 In the first paper, vector potential A is the sum of the static wiggler field plus the radiation field, and the 

wave function of the electron  was determined from the static wiggler field, but when the intensity of laser 

is high this will affect the wave function of the electrons as shown in the second paper. By taking into 

account this the Green’s function of the electrons as obtained as shown in the eq. ( ). Similar approach can 

be applied to obtain the Green’s function of  the photon. However, the formula becomes rather complicated 

to calculate this analytically. But the equation of the motion of the perturbed part of photon can be obtained 

by numerically using the computer. But due to the imaginarly components involved it requires rather long 

computer time. And also numerical calculation need the discreatalization of the continuous distribution 

function, This might have the instability of the calculation, and also the results depend on the segmentation 

of he continuous function. 

 

The electron’s motion is affected as change of  the moments of electron as  

 

K + q A(t’) and The equation of motion for the electron creation operator is affected as the change of he 

electron’ momentum. 

 

Our interest is photon, thus we can not use this approximation directly, but assuming that the vector field A 

which correspond to the electro magnetic field is expressed as the sum of the classical components and the 

photon components  

 

A= Ac +Ap 

 

We can photon part of Ap can be expressed as the creation and annihilation operators shown in the above 

formula. The equation of motion for these operators can be treated as before the dispersion relation of the 

photon affected by the high intensity classical field can be obtained. Since the electron motion is affected 

by the high intensity laser field, the multi mode with multi- mode frequency can be formulated also that the 

effects of the high intensity laser can be obtained.  

 

The other way of high intensity laser is a use of the coherent sate, which can be more neatly the high 

intensity laser than the classical one. This coherent state is defined as the eigen state of the annihilation 

operator for their basic function, thus it is not completely quantum mechanical one  



Ih ∂ψ/∂t = [H, . ψ } 

 

 

Our system composed of the electrons interacted with the EM field are express as the  

 

Sum of ψ e * ψ em  

And ψe = ∑j  of αaj ψej

 

And ψew =∑j of βj ψem j 

 

α j and beta j are respectively the amplitude of the electon eigen state of the j and the EM eigen state of 

electro magnetic eighen state j 

 

 

In the quatum mechanical formula the se amplitutde are opertors and the Total Hamiltonian of the system 

are expressed as the  

 

H total  =H electron + H EM + H inter 

 

The last term of hamiltonian are came from the staic interaction of the Coulomb interaction of two 

electrons kl 

 

 

 

And it is expressed as sum of the kl 1/r kl 

 

Where rkl is the distrance between kand l electons  

 

The coherent state of  the photon  is the eigen state of photon which state are eigen state can be secribed as 

the accwith eigen value  

 

 

For the electron state 

 

The Hamiltonian can be described by the creation and annihilation operators for electron which is affected 

by the electro-magnetic wave described by the coherent mode and the photon described by coherent mode 

and the the interaction hamiltonian between these electrons and photon mode , 



 

Equation of the motions for these operators can be derived the similar way as the  above formalism,  

 

In this formalism the intensity of the some mode of WM wave are taken into account from begging and the 

electron motion under influence of the this EM wave is described in the hamiltonian, the high intensity of 

Laser field can be properly described. The problem of the over completeness of the coherent sate was 

reduced to the completeness by dicretizing the continuous parameter α. Where the random phase 

approximation is used which is not exact quantum mechanical some de-coherency is introduced  to treat the 

phenomena as he classical one.  

 

When more accurate formula can be obtained bay refining he discretization mesh size, but it becomes very 

tedious calculation. Some randomization is needed to get answer. 

 

Although the EM wave is descried as the coherent state, in the above formula. By adding the super radiant 

states described by Dick the transition of the super radiant transition can be formulated and also, the 

expansion by the squeeze state mode, we can formulate these transition.  

 

 but the coherent effect which came out from the quantum formalism can not be described and the theory 

which can take into account coherent state should be used Fr this formalism. It has been studied in the 

squeeze state for free electron laser, this state is squeezed in the phase. Special photons which is a some 

phase of the electron magnetic wave are peaked. the formalism should be describe the squeezed state. 

 

The other one is the Dick’s super-radiant state which has a coherently coupled with in the  

 

Super radiant transition can be happened and the high intensity monochromatic radiation can be created. 

This radiation of the free electron laser can not be described by the classical formalism. The quantum 

mechanical formula using the second quantization method will be useful for this description. 



 

 

Tadashi Toyoda and Karl Wildermuth “ Charged Scrodinger paticl in a c-number radiation field. Phys. Rev 

D 22, 2391. (1989) 

 

Coherent State description has the problem of the over-completeness, The use of the complete subset  of of 

coherent state of Bargmann et al and Perelomov ( called VNLCS), we can describe the radiation field in 

semi classically.  

 

Two times  green function method developed by Prof. Matsubara for solid physics theory 

Applied by authors Physica 

Compared with the classical formula by Kwan 

 

High intensity laser  

 

By using the spontaneous amplification  , we can create the high intensity laser from small input signal, our 

formalism is limited in the low number of the moment of the correlation function. The obtained results can 

be applied only for small intensity laser, and very high amplification of the small signal input can not be 

treated. In order to get the high intensity alser application, the higher moment of correlation function should 

not be discarded, the whole simultaneous equation including the high moments of the coorelattion should 

be treated.  

 

By using the two times green function method, we can formalate for the high intensity case, howeveer, the 

higher order term should be involeved, the formula becomes very complicated, for the low intensity case, 

the 3rd order term are decoupled by approximation of the  

 

 

However, it becomes more complicated to formulate this process, we use the some approximation for this 

one.  

 

When the intensity of the laser becomes high, the classical approximation provide good approximation. As 

discussed later, the use of the coherent state expanstion justify the this approximation.  

When the laser intensity is high the electro- magnetic field created by laser affects of the motion of the 

electron and the track of the electron through the wiggler magnetic field will be influenced by the strong 

magnetic field. To treat this effect, we can formulate the free electron laser theory using the classical 

description of the laser. I formulated this in the paper of the    .  



“ H. Takahashi “ Interaction between a plasma and a strong electro-magnetic wave, Physica 98C (1980) 

313-324 

The formula obtained shows clearly the cleation of the higher frequency excitation  



 

 

The high harmonic of the laser  can be described as the  

 

 

 

 

 

Hamiltonian of Fel 

 

 

The Hamiltonian of the free-electron laseer can be described by the Equation (1)  

 

Where     

 

This Hamitonian can be descibed the  using the second quantiazation method  

Second quantization  

 

Dispersion equation for low intensity laser  

 

Electro-phton interaction in the high intensity laser 

 

Formulated equation of motion in the high intensity elctro magnetic wave aaaa9 aprroximated classical 

field0 

 

FEL in high intensity laser  

 

Self Amplification 

 

Many photon in the high intensity laser  

Classical formulation 

Coherent state description 

Quantum effect can be described  

 

Various description of photn field  

 

Coherent state 



Many modes 

 

Dick’s super radiant state 

Behaviour of laser intensity change can be described by these states.  sjcAe 

 

 

 

 

 

 

 

 

 

= ω2p ω2p /4γ3 ∑k=+-k0(((q+K)/K)2[(ω-(q+K).Vb)2 - 1/4( h(q+K)/mγ)2 +ω2p /γ]-1 

 

 

 (Tk1σ1 -Tk2σ2) -1∑k [H (k1, k2,k, σ1 ) nk2σ2 - H (k1, k2,k, σ2) n k1σ1  ], x (4πe2/k2))[ 1 +4πe2/k2 ∑k3k4 σ3 

 

x ++T k1σ1 –T k2σ2) G k1σ1k2σ;qλ(ω) = ∑k 4πe2/k2[n k2σ2 H (k1, k2,k, σ1 )- n k1σ1 H (k1, k2,k, σ2) ], x∑k3,k4 H* 

(k3, k4,-k, σ3 ) G k3σ3k4σ3;qλ(ω) +(n k2σ2- n k1σ1) M k2k1q;σ2σ1λ G qλ (ω). 

 

 

 

a+
k5σ1 (t)a+

k3σ3 (t) a k4σ3 (t)a k2σ2 (t); A q,λ
+(t’) >>  

 

+∑      M k2k3q1,σ2,σ3λ1 << a+
k1σ1 (t)a+

k2σ2 (t) A q,λ(t); A q,λ
+(t’) >> 

 

 

 

 

 

 

 

 

where   a+a+
k 11σk 11σ



ak
+

11σ
is the electron creation operator for electron momentum hk and spin   sigma , aksig is the corresponding 

annihilation operator, and T  is its energy.  

 

The interaction Hamilltonian ca be expressed by  

 

 

 The first term is due to the electron-photon interaction, with  

 

 

 

In eq. (2.15), N, is the number of spacing, is derived from the expression 

 

 

 

Where K = 2 pin/d ( n integer), d is the periodicity of the B field and v is the volume of the system.  

The function F-K is given by  

 

 

The Green function of the photon  

 

The propagation of the photon in this system can be obtained by solving for Green’s function of the photon. 

The dispersion relation of the photon is derived from the equation of motion for Green’s function  

 

The one –Photon retarded Green function can be written as  

 

Where 

 

 

And where < > denotes the statistic average. 

 

To be obtain the equation of motion for Green’s function, we consider the equation of motion for the 

creation and annihilation operators of photon a’s and electrons from Hamiltonian defined in the equation   

and    ; 

 

 



where  

 

 

The equation of motion for the Green’s function G    (t-t’) is obtained from  

where  

To solve eq.(2.9), the equation of motion for the Green’s function defined in eq(    ) is obtained by 

differentiating it with respect of time t as follows: 

 

By successive differentiation of the Green’s function with respect to t, hierarchy of equations is obtained. 

In order to close the hierarchy equation, we approximated the higher order Green’s function by expressing 

it in terms of the low order Green’s function. The decoupling of he higher order Green’s function is carried 

out as follows: 

 

The first term on the r.h.s. of eq. () contribute to the direct Coulomb interaction; the second and third terms 

contribute from the exchange Coulomb interaction. In the case of low density of the electron beams. The 

exchange terms are very small compared with the direct term, so that these terms can be neglected. The 

Fourier components of the equation of motion for the Green’s function G    () is thus obtained from  

 

Solving eq.(  ) and substituting into eq.(  ), we obtain the equation of motion for the photon Green’s 

function:  

 

The term [    ]  on the r,h.s. of eq.(  ) accounts, for he Coulomb shielding factor for the photo- electron 

interaction. In the case of  a weak B field, the normal process ( K=0) is predominant in the Coulomb 

interaction. And H (    ) can be approximated by the delta function , delta ( k_  ).  

 

In this formalism, the vector potential described for EM field is treated as the classical field.   

 

The electrons beams are influenced by the high intensity EM field, and instead of the Green’s function of 

eq(2.12) should not be treated as the de-coupling the equation of the motion for this Green’s function 

should be taken into accounted, as described in the above the simultaneous equation should be solved for 

this high intensity cases. Thus for the  highly correlated laser   the electron wave function is expressed as 

the sum of the plane wave shown  
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ih ∂ak1,σ1 (t)/∂t = [ak1,σ1 (t) , H]  = Tak1,σ1ak1,σ1(t)- + 

∑k2q2;σ1, 2λ M k1k2q,σ1,σ2λ aq,λ(t) a+k3,σ2 (t)ak4,σ2(t)ak2 

+∑ k2k3k4,σ2V k1k3k4k2,σ1,σ2σ2σ1(t) a+k3,σ2 (t)ak4,σ2(t)ak2,σ1(t) (2.8) 

 

 a+qk3,λ(t))aq,λ(t)ak1,σ1 (t  

 

a k1,σ1 (t )a k1,σ1 (t )hωq,λ(b q,λ(t)-b+ q,λ(t)) 

               = hωq,λB q,λ(t) 

 

 A q,λ(t) A q,λ(t) A  
q,λ(t) 

In the quantum physics the equation of motion of  state vector Psi is described as  

H = ∑ ( c αip i- -eA/c) + βi mc 2 )  

 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∑ kσ T kσ a + kσ a kσ + ∑ kqλ  hω q b +q,λ b q,λ  

 

ih ∂ak1,σ1 (t)/∂t = [a k1,σ1 (t) , H]  = Ta k1,σ1ak1,σ1(t)- + 

∑k2q2;σ1, 2λ M k1k2q,σ1,σ2λ aq,λ(t) a+k3,σ2 (t)ak4,σ2(t)ak2

+∑ k2k3k4,σ2V k1k3k4k2,σ1,σ2σ2σ1(t) a+k3,σ2 (t)ak4,σ2(t)ak2,σ1(t) (2.8) 

 

 

 

Where A is the sum of the vector potential As of the B- field and the vector potential As of the electro 

magnetic wave; A= As +Ar,  

 

 

 

 

 

H                        = ∑ ( c αip )- -eA/c) + βi mc2) 
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