Harmonic Jumping

R. B. Palmer (BNL)

FFAG Workshop
May 2006

Consider Model of Harmonic Jumping FFAG for AGS Booster

$$
E_{2}(\text { proton })=1.5 \mathrm{GeV}
$$

so

$$
E_{2}(\text { electron })=1500 \frac{.51}{930}=0.82 \mathrm{MeV}
$$

For $\left.E_{2} / E_{1}\right)=6$ then

$$
E_{1}(\text { electron })=140 \mathrm{MeV}
$$

Simple Non-Relativistic Theory for electron ring

L is circumference
f is frequency

$$
h=\frac{f L}{v} \approx \frac{f L}{c} \sqrt{\frac{m c^{2}}{2 E}}
$$

$$
\text { Differentiate and set } d h=1 \text { gives } \quad \Delta E=\frac{2 E}{h}
$$

$$
\Delta E(\max)=\frac{2 E_{2}}{h_{2}}
$$

so for $\Delta E / E=100 \quad$ i.e. gain over linac of 100 , then

$$
h_{2}=200
$$

and for $E_{2} / E_{1}=6$

$$
h_{1}=h_{2} \sqrt{\frac{E_{2}}{E_{1}}} \approx 500
$$

For $\mathrm{L}=10 \mathrm{~m}, \mathrm{~m}=.51 \mathrm{MeV}, E_{2}=0.1 \mathrm{MeV} / \mathrm{c}$:

$$
f=\frac{h_{1} v}{L} \approx \frac{h_{1} c}{L} \sqrt{\frac{2 E_{1}}{m c^{2}}} \approx 10 G H z
$$

Electron Ideal

Phase constant because bunches come back at correct time

Generation of Rapid change in ΔE

- Final rise is very Rapid
- Can one put energy into cavity this fast?
- Try beating two frequencies against one another
- sum is frequency $\left(f_{1}+f_{2}\right) / 2$
- varying as $\sin \left(2 \pi\left(f_{1}-f_{2}\right) / 2 t\right)$
- But this does not match shape of required rise
- Allow phase changes to take up the difference

Electron Simulation with Sin RF

So it works fine Note $\Delta E=25 \mathrm{KeV}$ is very easy

Proton Case

- If in AGS Ring then $L \approx 900$ (m)
- the above recipe gives $f \approx 100 \mathrm{MHz}$
- which is a bit low
- Raise h_{1} from 500 to 1000
- Then $f \approx 200 \mathrm{MHz}$
- a smaller ring might be prefered, but try this

Proton Simulation

Conclusion

- So proton ring works fine too
- But 25 MeV Energy gain may not be so easy
- $20 \mathrm{MV} / \mathrm{m}$ maybe ok
- But acceleration must be within $\lambda / 2$ and $\lambda \propto 1 / h$ is NOT constant
- This may be good
- If phases right for final harmonic
- Then acceleration is less for earlier harmonic
- We may get our time dependent effectice gradient automatically

Needs more study, including longitudinal acceptance

