Status of tracking codes

Contents
${ }_{1}$ FFAG lattices that need large amplitude tracking 2
2 DA's of concern - orders of magnitude 3
${ }_{3}$ Tracking codes known to (or to have) handle(-d) FFAG problems 5
${ }_{4}$ Comparisons between codes 11
5 Remarks on s-type integrators and precision 17
6 (Tentative) conclusions 20

1 FFAG lattices that need large amplitude tracking

Goals in doing 6D-LAT : design and optimisation of lattice and magnet. DA tracking.

Linear, non-scaling (natural $\xi_{x, z}$)

Concerns : muon, EMMA
Apps. : NuFact

FDF triplet

Concerns : proton, p-model
Apps. : hadrontherapy, p-driver

Scaling - $\frac{B}{B_{0}}=\left(\frac{r}{r_{0}}\right)^{K}$ (zero chromaticity, $\forall p$)

SC technology

Concern : muon, e and p
Apps. : muon phys., NuFact, high power e and p, hadrontherapy,

Non-linear, non-scaling
Pumplet lattice

Concerns : muon and e-model (isochronous, $\xi_{x}>0, \xi_{z} \rightarrow 0$) ; proton
Apps. : NuFact, p driver

Adjusted field profile?
($\xi_{x, z} \rightarrow$ small)
siave viem

Concerns: proton
Apps. : p driver, hadrontherapy

2 DA's of concern - orders of magnitude

- DA's to explore are large, possibly very large - a key interest of FFAGs.

Linear, non-scaling
FD doublet

Muon :
$\gg 3 \pi \mathrm{~cm}$ norm.

EMMA (electron) :
$>$ 200-300 $\pi \mathrm{mm}$.mrad norm.

Non-linear, scaling
DFD triplet, doublet, spiral

$$
\begin{aligned}
& 0.3-20 \text { GeV muon : } \\
> & 3 \pi \mathrm{~cm} \text { norm., } 1.5 \pi \text { eV.s }
\end{aligned}
$$

Proton :

Non-linear, non scaling
Pumplet lattice

8 - 20 GeV muon isochronous $\approx \pi \mathrm{cm}$ norm. $-0.5 \pi \mathrm{eV} . \mathrm{s}$
p-Driver :
10s $\pi \mathrm{mm} . \mathrm{mrad}$ norm.
electron model : 100-300 $\pi \mathrm{mm}$.mrad norm.

Adjusted field profile
p apps.,
10s $\pi \mathrm{mm}$.mrad norm.

Proton :
10s $\pi \mathrm{mm} . \mathrm{mrad}$ norm.

- A straightforward remark with these types of optics: given $\left\{\begin{array}{l}(i) \text { the large excursions, }\end{array}\right.$ better use an accurate stepwise tracking method :
- In all cases : FFAG tracking methods need to provide means for 6-D simulation in presence of $\left\{\begin{array}{l}\text { - fast acceleration } \\ \text { - orbit change with } E \\ - \text { proximity and/or crossing of resonances }\end{array}\right.$
muon, EMMA, linear, non-scaling FD doublet

250 MeV p-therapy
linear, non-scaling FDF triplet

pumplet, e-model
AFP
non-linear non-scaling

- May also need : Fringe gield overlapping, case of e.g., $\left\{\begin{array}{l}- \text { scaling FFAGs, cf. PRISM } \\ \text { - linear FIDF triplet, cf. 250MeV p-Therapy }\end{array}\right.$
- And also, sooner or later : will need symplectic tracking using magnetic field maps.

Cf. for instance present R\&D in Japan

3 Tracking codes known to (or to have) handle(-d) FFAG problems

code	seen in company of (sort of POP	allows FF overlap	allows field map	method $\begin{array}{r}\text { Nor } \\ \\ \\ 0\end{array}$
COSY	linear FFAG			Taylor expansion, $\stackrel{\stackrel{\circ}{\rightrightarrows}}{\leftrightarrows}$
ICOOL	muon ; scaling DFD	yes -		RIK4
MAD-PTC	muon, EMMA		no	$\begin{aligned} & \text { kick-driift, } \\ & \text { symplectic, z-type } \\ & \hline \end{aligned}$
J-RK4	typical of J R\&D		yes	®
S	linear ; scaling		yes	kick-drift, sympl., s-type
Zgoubi	all types of FFAGs	yes ${ }^{\circ}$	yes	Taylor series, s-type

| Probably |
| :--- | :--- |
| needs |
| completion |\(\left\{$$
\begin{array}{l}\text { }\end{array}
$$\left\{\begin{array}{l}.

\cdots

Optics investigations, SYNCH, TEAPOT, MAD8, etc. : see Trbojevic et als., PAC03\end{array}\right.\right.\)

ICOOL

Example : overlapping fringe fields in an FFAG triplet

- Fringe field model, with two asymptotes : $B=\frac{1}{2} B_{o}\left(1-\frac{e^{z / \Gamma}-e^{-z / \Gamma}}{e^{z / \Gamma}+e^{-z / \Gamma}}\right)$
- Overlapping based on $\sum F T(B(s))$, also avoids discontinuities

Zgoubi - the "FFAG" and "DIPOLES" procedures

- Two main goals : $\left\{\begin{array}{l}\left.(i) \text { simulate } B_{z i}(r, \theta)=B_{z 0, i} \mathcal{F}_{i}(r, \theta) \mathcal{R}_{i}(r) \text { (e.g., scaling, pumplet) }\right) ~\end{array}\right.$ (ii) allow for possible overlap of fringe fields

Main apps : scaling and isochronous FFAGs.

- An example : simulation of a scaling FFAG triplet :

DFD triplet.

The geometrical model is based on the superposition of the independent contributions

$$
\begin{gathered}
\text { of the } N \text { dipoles : } \\
\hline B_{z}(r, \theta)=\sum_{i=1, N} B_{z 0, i} \mathcal{F}_{i}(r, \theta) \mathcal{R}_{i}(r) \\
\hline
\end{gathered}
$$

at all (r, θ) in the mid-plane.
Field off mid-plane is obtained by Taylor expansion accounting for Maxwell's eqs.

Field experienced for $r_{0}=4.87 \mathrm{~m}$ in a DFD dipole triplet.

Codes known to (or to have) handle(-d) FFAG problems
$\left.\begin{array}{llccc} & \text { code } & \begin{array}{c}\text { seen in } \\ \text { company of } \\ \text { (sort of POP) }\end{array} & \begin{array}{c}\text { allows } \\ \text { FF overlap }\end{array} & \begin{array}{c}\text { allows } \\ \text { field map }\end{array} \\ & \text { COSY } & \text { linear FFAG }\end{array}\right)$

Tracking in 3-D field maps

DFD sector triplet constituting a 30 degrees sector cell.

Radial tune (left plot) and axial tune (right) as a function of energy, as obtained using
RK4 integration (solid lines/crosses), or using Zgoubi (dashed line/squares).

Geometry of TOSCA field map, covering half the angular extent.

Sample multiturn tracking using field maps, more than 3000 passes in a DFD triplet cell.
The accuracy ("symplecticity") appears to be very good.

Codes known to (or to have) handle(-d) FFAG problems

code	seen in company of (sort of POP)	allows FF overlap	allows field map	has performed 6-D tracking
Cosy	linear FFAG			no
ICOOL	muon ; scaling DFD	yes		yes
MAD-PTC	muon, EMMA		no	linear FFAG -
J-RK4	typical of J R\&D		yes	yes
S	linear ; scaling		yes	yes ${ }^{\text {- }}$
Zgoubi	all types of FFAGs	yes	yes	all types \bullet

4 Comparisons between codes

S / Zgoubi comparison (1)

Time of flight in muon linear FFAG. Some work left...

Time of flight of $30 \pi \mathrm{~mm}$ particles per turn

Zgo			S-c		
PID	Trev	Δ Trev	PID	Trev ($\mu \mathrm{s}$)	Δ Trev
1	. 964504		1	. 950106	
2	. 964807	. 000303	2	. 950416	. 000310
3	. 964819	. 000315	3	. 950406	. 000300
4	. 964813	. 000309	4	. 950398	. 000292
5	. 964804	. 000303	5	. 950394	. 000288

S / Zgoubi comparisons (2)

Acceleration in muon linear FFAG. Results seem promissing. Check in detail ?

Trajectory in longitudinal phase space for different transverse amplitudes
(10 to 20 GeV muon ring)

Markers (colors) corresponds to the horizontal amplitude of $0,10,20,30,40,50,60 \Pi \mathrm{~mm}$ (normalized), respectively. $40 \Pi \mathrm{~mm}$ particle is barely accelerated, but not $50 \Pi \mathrm{~mm}$.

S / Zgoubi comparisons (3)

6-D cceleration in muon linear FFAG.

10 to 20 GeV muon ring

Particles are uniformly filled in each phase space independently.

Zgoubi

S-code

(30 p mm in transverse, 0.05 eVs in longitudinal.)

S / Zgoubi comparisons (4) : more wanted

Analytical modeling for non-scaling magnet (1)

Analytical modeling for non-scaling magnets
(2)

- Shifted quadrupole
_ Soft edge model with Enge type fall off.
_ Scalar potential in cylindrical coordinates.

$$
P_{2}(r, q, z)=\frac{r^{2} \sin 2 q}{2}\left[G_{2,0}(z)+G_{2,2}(z) r^{2}+\dot{i} \cdot \dot{b}\right]
$$

where

$$
G_{2,2 k}(z)=(-1)^{k} \frac{2}{4^{k} k!(2+k)!} \frac{d^{2 k} G_{2,0}(z)}{d z^{2 k}}
$$

and

$$
G_{2,0}(z)=\frac{G_{0}}{1+\exp \left(\sum_{i=0}^{5} C_{i} z^{i}\right)} \quad z=\frac{s}{g}
$$

s : distance from hard edge.
g : scaling parameter of the order of gap.
C_{i} : Enge coefficient.

- Up to G_{20} and G_{21}
- Edge focusing
- Up to G_{22} and G_{23}
_ Octupole components of fringe fields
- Up to G_{24} and G_{25}
- Dodecapole ...
- Feed-down of multipole (octupole) has large effects when G_{22} and higher order is included.
. It is not clear if it is real or numerical defects due to subtraction of two large numbers.

Potential for cross-checks with MAD-PTC (1)

Horizontal Phase Space Trajectories vs. Horizontal Emittance

- Graph in $\left(x, p_{x}\right)$, not in nor-
(x, px) for maro9h
 malised phase space
- Abscissa is horizontal offset x from reference orbit
- Ordinate is p_{x} divided by reference momentum $p_{0}=15 \mathrm{MeV}$
- Initial beam in lower left corner, final beam in upper right corner
- Launch the same 41 particles as before
- Rather wide initial beam \rightarrow choose smaller $\varepsilon_{x n}$?
- Final beam has elliptical outline
- Ellipses not centred around particle launched on closed orbit
- Concentration of dots on right side of final beam, c.f. Machida's talk

Potential for cross-checks with MAD-PTC (2)

5 Remarks on s-type integrators and precision

- Final ITER-ation

In s-type integration, the downstream boundary of an optical element is in general not reached exactly after an integer number of steps Δs. Therefore, s-type integration needs a terminator algorythm.

The final step $\delta s<\Delta s$ for the trajectory to intecept the downstream boundary being not know, that intercept will result from an iteration process.
In Zgoubi for instance, the ITER algorythm writes :

```
SUBROUTINE ITER(A,B,C,DS,COSTA,KEX,*)
PARAMETER (EPS=1.D-6,ITMAX=1000)
PARAMETER (EPS2=1.D-10)
DM=1.D30
```

```
CALCUL INTERSECTION DE LA TRAJECTOIRE AVEC DROITE AX+BY+C=0
```

CALCUL INTERSECTION DE LA TRAJECTOIRE AVEC DROITE AX+BY+C=0
DO 1 I=1,ITMAX
D=A* XF (1) +B* XF (2) +C
ABSD = ABS(D)
IF(ABSD .LE. EPS) THEN
IF(ABSD .LE. EPS2) THEN
RETURN
ELSEIF(D.GT.DM.OR.D.EQ.O.DO) THEN
RETURN
ENDIF
ENDIF
DM=ABSD
DS=DS-D/COSTA
C One more push
CALL DEPLA(DS)
CONTINUE

```

In that manner, the boundary is reached with accuracy at machine precision, in general in no more \(I T=2-5\) iterations.
- Order of final ITER-ation integrator

It can be shown that the overall precision of the integration from end to end over an optical element is liable to fall below that of the final iteration integrator.

For that reason, it is fundamental that the latter be of the same order in \(\Delta s\) as that of the body integrator.

In Zgoubi for instance, it is simple : the ITER integrator is the same as for body (DEPLA(DS), above).

These considerations are illustrated in the next slide


Figure 1: Zgoubi, order 4 with 20 steps (left) or 6 with 5 steps (right).


Figure 3: Effect of loss of precision in ITER. Zgoubi is used at order 6 with 20 steps, so to insure good precision at all steps but the last one. (This should produce an invariant at least as good as in Fig. 2-right). precision at all steps but the last one. (This should produce an invariant at least as good as in Fig. 2 -right).
Here however we purposely mishandle the last step, lowering the order of ITER \((\chi)\) to 2,3 or 4 from left to right. Conclusion: spoiling the precision in the last step is enough to spoil the overall symplecticity. It decreases the precision to respectively order 2,3 and 4.


Figure 4: Starts from the conditions in Fig. 3, namely, order 6 at all steps except for the last step where order 2 is taken. The difference is in the number of steps, 2000 instead of 20 . The precision is regained. The overall order is unchanged, still spoiled down to order 2 due to the order 2 in the last step. However the accuracy is better in account of the high number of steps.

\section*{6 (Tentative) conclusions}
- We dispose of three-four 6D-LAT codes
- We dispose of the trackers (sort of sacerdotical life type of folks...)
- It's probably enough, it's not too much, the difficulty of the FFAG problem deserves it
- Carry on cross checks
- Carry on upgrade of codes and optics libraries

Thank you```

