F. Méot, CEA & CNRS LPSC, Grenoble

Status of tracking codes

C	ontents	
1	FFAG lattices that need large amplitude tracking	2
2	DA's of concern - orders of magnitude	3
3	Tracking codes known to (or to have) handle(-d) FFAG problems	5
4	Comparisons between codes	11
5	Remarks on s-type integrators and precision	17
6	(Tentative) conclusions	20

1 FFAG lattices that need large amplitude tracking

Goals in doing 6D-LAT : design and optimisation of lattice and magnet. DA tracking.

[R]Ions

- DA's of concern orders of magnitude 2
- DA's to explore are large, possibly *very* large a key interest of FFAGs.

Linear, non-scaling

FD doublet

Muon:

Non-linear, scaling

DFD triplet, doublet, spiral

0.3 - 20 GeV muon : $> 3\pi$ cm norm., 1.5 π eV.s

Proton :

o D

10s π mm.mrad norm. 0.15 10 MeV/ 12 MeV ^ 22 0.1 \43 **\85** 0.05 0.0 -.05 0.3218 0.3209 -.1 0.3214 -.15 Ox=0.3150 4.6 4.2 4.8 4.4

Non-linear, non scaling

Pumplet lattice

8-20 GeV muon isochronous $\approx \pi$ cm norm. -0.5π eV.s

p-Driver : 10s π mm.mrad norm.

electron model : **100-300** π **mm.mrad** norm.

Adjusted field profile p apps., 10s π mm.mrad norm.

EMMA (electron) : \gg **200-300** π **mm.mrad norm.**

Proton : 10s π **mm.mrad norm.**

• A straightforward remark with these types of optics : given better use an accurate stepwise tracking method !

the large excursions, possibly the strong non-linearities,

• May also need : Fringe gield overlapping, case of e.g., { - scaling FFAGs, cf. PRISM - linear FDF triplet, cf. 250MeV p-Therapy

• And also, sooner or later : will need symplectic tracking using magnetic field maps. Cf. for instance present R&D in Japan

	code	seen in company of (sort of POP)	allows FF overlap	allows field map	method
	COSY ICOOL	linear FFAG muon : scaling DFD	ves 🖷		Taylor expansion, needs ref. orbit RK4
	MAD-PTC J-RK4	C muon, EMMA typical of J R&D	<i>J</i> CB C	no yes	kick-drift, symplectic, z-type
	S	linear ; scaling		yes	kick-drift, sympl., s-type
	Zgoubi	all types of FFAGs	yes 🗕	yes	Taylor series, s-type
Probably needs completion	•••				

Tracking codes known to (or to have) handle(-d) FFAG problems 3

ICOOL

Example : overlapping fringe fields in an FFAG triplet

- Fringe field model, with two asymptotes : $B = \frac{1}{2}B_o\left(1 - \frac{e^{z/\Gamma} - e^{-z/\Gamma}}{e^{z/\Gamma} + e^{-z/\Gamma}}\right)$ - Overlapping based on $\sum FT(B(s))$, also avoids discontinuities

Zgoubi - the "FFAG" and "DIPOLES" procedures

• Two main goals : $\begin{cases} (i) \text{ simulate } B_{zi}(r,\theta) = B_{z0,i} \mathcal{F}_i(r,\theta) \mathcal{R}_i(r) \text{ (e.g., scaling, pumplet)} \\ (ii) \text{ allow for possible overlap of fringe fields} \end{cases}$

Main apps : scaling and isochronous FFAGs.

• An example : simulation of a scaling FFAG triplet :

DFD triplet.

The geometrical model is based on the superposition of the independent contributions of the N dipoles : $B_z(r,\theta) = \sum_{i=1,N} B_{z0,i} \mathcal{F}_i(r,\theta) \mathcal{R}_i(r)$ at all (r,θ) in the mid-plane.

Field off mid-plane is obtained by Taylor expansion accounting for Maxwell's eqs.

Codes known to (or to have) handle(-d) FFAG problems

needs

completion

. . .

		code	seen in company of (sort of POP)	allows FF overlap	allows field map
		COSY	linear FFAG		
		ICOOL	muon; scaling DFD	yes	
		MAD-PTC	muon, EMMA		no
		J-RK4	typical of J R&D		yes 🗕
		S	linear ; scaling		yes
		Zgoubi	all types of FFAGs	yes	yes 🗕
Probably	(• • •			
needs	Į	• • •			

Tracking in 3-D field maps

DFD sector triplet constituting a 30 degrees sector cell.

Geometry of TOSCA field map, covering half the angular extent.

Sample multiturn tracking using field maps, more than 3000 passes in a DFD triplet cell.

The accuracy ("symplecticity") appears to be very good.

Codes known to (or to have) handle(-d) FFAG problems

	code	seen in company of (sort of POP)	allows FF overlap	allows field map	has performed 6-D tracking
	COSY	linear FFAG			no
	ICOOL	muon ; scaling DFD	yes		yes
	MAD-PTC	muon, EMMA		no	linear FFAG 🗕
	J-RK4	typical of J R&D		yes	yes
	S	linear ; scaling		yes	yes 🗕
	Zgoubi	all types of FFAGs	yes	yes	all types 🗕
(• • •				
ł	• • •				
10	• • •				

Probably needs completion

- 4 Comparisons between codes
- S / Zgoubi comparison (1)

Time of flight in muon linear FFAG. Some work left...

S / Zgoubi comparisons (2)

Acceleration in muon linear FFAG. Results seem promissing. Check in detail ?

Trajectory in longitudinal phase space for different transverse amplitudes (10 to 20 GeV muon ring)

Markers (colors) corresponds to the horizontal amplitude of 0, 10, 20, 30, 40, 50, 60 ∏ mm (normalized), respectively.
40 ∏ mm particle is barely accelerated, but not 50 ∏ mm.

S / Zgoubi comparisons (3)

6-D cceleration in muon linear FFAG.

Zgoubi

10 to 20 GeV muon ring

Particles are uniformly filled in each phase space independently.

S-code

(MeV) Zgoubi | Zpop KinEnr vs. Phase 1800 GeV] 16000 14000 12000 10000 -1 -3 -2 0 3 0.2 0.4 0,6 0,8 * Test Scott's Fixed Length Lattice RF phase/2Pi Min-max. Hor.: -3.142 Part# 1-10000 (*) ; Lmnt# * all; pass#

(30 p mm in transverse, 0.05 eVs in longitudinal.) ¹

S / Zgoubi comparisons (4) : more wanted

Analytical modeling for non-scaling magnet (1)

- Shifted quadrupole
 - _ Soft edge model with Enge type fall off.
 - Scalar potential in cylindrical coordinates.

$$P_{2}(r,q,z) = \frac{r^{2} \sin 2q}{2} \Big[G_{2,0}(z) + G_{2,2}(z)r^{2} + \dot{c} \cdot \dot{c} \Big]$$

where

$$G_{2,2k}(z) = (-1)^k \frac{2}{4^k k! (2+k)!} \frac{d^{2k} G_{2,0}(z)}{dz^{2k}}$$

and

$$G_{2,0}(z) = \frac{G_0}{1 + \exp\left(\sum_{i=0}^5 C_i z^i\right)} \qquad z = \frac{S}{g}$$

- s: distance from hard edge.
- g: scaling parameter of the order of gap.
- C_i : Enge coefficient.

Analytical modeling for non-scaling magnets (2)

- Up to G_{20} and G_{21} _ Edge focusing
- Up to G₂₂ and G₂₃ _ Octupole components of fringe fields
- . Up to G_{24} and G_{25}
 - _ Dodecapole ...

9

- Feed-down of multipole (octupole) has large effects when $\rm G_{_{22}}$ and higher order is included.
- It is not clear if it is real or numerical defects due to subtraction of two large numbers.

Potential for cross-checks with MAD-PTC (1)

March 23, 2006

Potential for cross-checks with MAD-PTC (2)

Electron Model Phone Conference 22 Mar 2006

March 23, 2006

5 Remarks on s-type integrators and precision

• Final ITER-ation

In s-type integration, the downstream boundary of an optical element is in general not reached exactly after an integer number of steps Δs . Therefore, s-type integration needs a terminator algorythm.

The final step $\delta s < \Delta s$ for the trajectory to intecept the downstream boundary being not know, that intercept will result from an iteration process.

In Zgoubi for instance, the ITER algorythm writes :

```
SUBROUTINE ITER(A, B, C, DS, COSTA, KEX, *)
      PARAMETER (EPS=1.D-6, ITMAX=1000)
      PARAMETER (EPS2=1.D-10)
      DM=1.D30
CALCUL INTERSECTION DE LA TRAJECTOIRE AVEC DROITE AX+BY+C=0
      DO 1 I=1, ITMAX
        D = A * XF(1) + B * XF(2) + C
        ABSD = ABS(D)
        IF (ABSD .LE. EPS) THEN
          IF (ABSD .LE. EPS2) THEN
            RETURN
          ELSEIF(D.GT.DM.OR.D.EO.0.D0) THEN
            RETURN
          ENDIF
        ENDIF
        DM=ABSD
        DS=DS-D/COSTA
C One more push
        CALL DEPLA(DS)
 1
      CONTINUE
```

In that manner, the boundary is reached with accuracy at machine precision, in general in no more IT = 2 - 5 iterations.

• Order of final ITER-ation integrator

It can be shown that the overall precision of the integration from end to end over an optical element is liable to fall *below that of the final iteration integrator*.

For that reason, it is *fundamental* that the latter be of the same order in Δs as that of the body integrator.

In Zgoubi for instance, it is simple : the ITER integrator is the same as for body (DEPLA(DS), above).

These considerations are illustrated in the next slide

Tracking : effects of integrator order, ITER-ation order

Figure 3: Effect of loss of precision in ITER. Zgoubi is used at order 6 with 20 steps, so to insure good precision at all steps but the last one. (This should produce an invariant at least as good as in Fig. 2-right). Here however we purposely mishandle the last step, lowering the order of ITER (χ) to 2, 3 or 4 from left to right. Conclusion: spoiling the precision in the last step is enough to spoil the overall symplecticity. It decreases the precision to respectively order 2, 3 and 4.

Figure 4: Starts from the conditions in Fig. 3, namely, order 6 at all steps except for the last step where order 2 is taken. The difference is in the number of steps, 2000 instead of 20. The precision is regained. The overall order is unchanged, still spoiled down to order 2 due to the order 2 in the last step. However the accuracy is better in account of the high number of steps.

6 (Tentative) conclusions

- We dispose of three-four 6D-LAT codes
- We dispose of the trackers (sort of sacerdotical life type of folks...)
- It's probably enough, it's not too much, the difficulty of the FFAG problem deserves it
- Carry on cross checks
- Carry on upgrade of codes and optics libraries

Thank you