The International Scoping Study for a Neutrino Factory

Christopher R. Prior

Accelerator Science & Technology Centre, ASTeC CCLRC Rutherford Appleton Laboratory

> Trinity College University of Oxford, United Kingdom

FFAG Workshop, Port Jefferson, May 2006

Outline

Neutrino Factory

The International Scoping Study

Proton Drivers

Target

Muon Front-end

Muon Acceleration

Decay Ring

ISS Decisions

Neutrino Factory Overview

- Proton driver
 - primary beam on production target
- Target, capture, decay
 - create π, decay into μ
- Bunching, phase rotation
 - reduce △E of bunch
- Cooling
 - reduce transverse emittance
- Acceleration
 - from \sim 130 MeV to 20–50 GeV
- Decay Ring
 - store for \sim 500 turns
 - long ν production straight

J-PARC Neutrino Factory Proposal

FFAG based neutrino factory

- Four scaling FFAGs accelerate muons from 0.3 to 20 GeV.
- No cooling.
- Single muon bunch throughout the cycle.

Challenges

- Muons have a short lifetime (2.2 µs at rest)
 - Puts premium on rapid beam manipulations
 - requires fast acceleration system;
 - requires high gradient NC RF for cooling (in B-field);
 - requires untested ionization cooling technique.
- Muons are created as a tertiary beam ($p \rightarrow \pi \rightarrow \mu$)
 - low production rate
 - \implies target able to handle multi-MW beam;
 - large muon beam transverse phase space and large energy spread

⇒ high acceptance acceleration system and storage ring.

- Neutrinos are themselves a quarternary beam
 - even less intensity and less control;
 - goal is 10²¹ decays per year.

International Scoping Study

Terms of Reference

The physics case for the facility will be evaluated and options for the accelerator complex and neutrino detection systems will be studied. The principal objective will be to lay the foundations for a full conceptual-design study of the facility. The plan for the scoping study has been prepared in collaboration by the international community: the ECFA/BENE network in Europe, the Japanese NuFact-J collaboration, the US Muon Collider and Neutrino Factory Collaboration and the UK Neutrino Factory collaboration. CCLRC's Rutherford Appleton Laboratory will be the 'host laboratory' for the study.

Goals of the Accelerator Study

- Study alternative configurations; arrive at specifications for a baseline recommendation
- Develop and validate tools for end-to-end simulations of alternative facility concepts
- Focus on selected options as a prelude to subsequent International Design Study (IDS)
 - Note: IDS will have more of an engineering aspect than the ISS
- Carry out a cost evaluation
- R&D list to be developed as study proceeds
 - identify activities that must be accomplished for a credible, cost-effective design
- ISS needs engineering resources knowledgeable in accelerator and detector design

ISS Structure

Three main areas of study: Physics, Detectors, Accelerators Accelerator Study managed by Machine Council.

R. Fernow (BNL), R. Garoby (CERN), Y. Mori (KURRI),
R. Palmer (BNL), C. Prior (RAL), M. Zisman (LBL, Chairman)

Aided by Task Coordinators

- Proton Driver R. Garoby, H. Kirk (BNL), Y. Mori, C. Prior
- Target J. Lettry (CERN), K. McDonald (Princeton)
- Muon Front-end and Cooling R. Fernow, K. Yoshimura (KEK)
- Muon Acceleration J.S. Berg (BNL, Y. Mori, C. Prior
- Decay Ring C. Johnstone (FNAL), G. Rees (RAL)

Meetings

- Main ISS Meetings: CERN (Sep'05), KEK (Jan'06), RAL (Apr'06), NUFACT'06, UCLA (Aug'06)
- Plus several informal workshops/meetings

Proton Drivers

NF requirements

- 4 MW of proton beam power on pion target.
- Delivered in pulses comprising bunches of 1–3 ns duration rms.

Tasks

- Consider whether existing machines can be developed to meet NF requirements and analyse new designs.
- Compare merits of different structures performance and cost.
 - Full energy linac, accumulator and compressor rings.
 - RCS-based drivers.
 - FFAG proton drivers (scaling or non-scaling).
- Decide on optimum repetition rate relates to target and downstream RF structures.
- Decide on optimum beam energy depends on target choice.
- Decide on optimum pulse structure affects whole of remaining structure.
- Weigh up bunch length trade-offs.

Linac-based Proposals – CERN SPL

 Phased construction: Linac4 to 160 MeV to feed PS Booster.

• TESLA/ILC type cryostats, 5-cell SC Nb cavities, cold quadrupoles.

Add 366 m of SC RF to reach 3.5 GeV.

• Layout and beam dynamics (CEA).

Linac-based Proposals – Fermilab 8 GeV Proton Linac

8 GeV Linac can produce streams of 1.5×10^{14} protons at up to 10 Hz $\implies > 10^{22}$

protons/year, 2 MW

- Go to 20 Hz for 4 MW (22.5 MW wall-plug power)
- 4 bunches, 4 ns over 50 ms in accumulator/compressor ring for NF

Proton Drivers based on Synchrotrons

4 MW AGS proton driver layout

AGS upgrades to 1 and 4 MW

- J-PARC scheme with 3 and 50 GeV synchrotrons
- RAL models at 5 GeV, 8 GeV, 15 GeV and 30 GeV

RAL 15 GeV, 25 Hz, 4 MW Driver

- Main ring of 151 m mean radius to fit CERN's ISR tunnel
- Booster for beam accumulation (phase space painting etc)
- Main RCS for acceleration and bunch compression
- Double rings system
- 6 bunches per pulse, 1 ns rms on target.

FFAG-based Proton Drivers

RAL Model

- 50 Hz, 10 GeV, 4 MW proton driver
- 180 MeV linac
- 3 GeV RCS booster for accumulation
- 3-10 GeV FFAG with insertions

Ruggiero Model

 200 MeV – 1 GeV, 10 MW, 1 kHz

Table of Proton Drivers

 τ_p = pulse duration, N_b = number of bunches per pulse, τ_b = final compressed bunch length.

Driver	Power	Туре	Energy	Frequency	Protons	Pulse structure		ture
	(MW)		(GeV)	(Hz)	per pulse $(\times 10^{13})$	$ au_{p}$ (μ s)	Nb	τ_b (ns)
BNIL AGS	1	Synch	28	2.5		720	24	2
DINE-AGS		Synch	20	2.5	5	720	24	3
	4	Synch	28	5	18	720	24	3
	4	Synch	40	5	12.5	720	24	3
FNAL	2	Synch	8	15	10	1.6	84	1
	2	Linac	8	10	15			
FNAL MI	2	Synch	120	0.67	15	10	530	2
CERN-SPL	4	LAR	2.2	50	23	3.2	140	1
	4	LAR	3.5	50	14	1.7	68	1
J-PARC	0.75	Synch	50	0.3	31	4.6	8	6
RAL	4	Synch	5	50	10	1.4	4	1
	4	Synch	6–8	50	8.3	1.6	6	1
	4	FFAG	10	50	5	2.3	5	1
	4	Synch	15	25	6.7	3.2	6	1
RAL/CERN	4	Synch	30	8.33	10	3.2	8	1
KEK/Kyoto	1	FFAG	1	10 ⁴	0.06	0.4	10	10
	1	FFAG	3	3 10 ³	0.06	0.5	10	10

Target/Capture/Decay

- Optimum target material solid or liquid; low, medium or high Z
 - Targets examined: C, Cu, Hg, Ta, all with r = 1 cm
 - Proton beam energies considered: 5, 10 and 24 GeV
 - Proton bunches from 1–3 ns rms
- Find 1 ns is preferred but 2–3 ns is acceptable;
- 12% fall-off in performance at 3 ns;
- such short bunches hard to achieve at low energy

- Intensity limitations (from target or beam dump)
- Horn or solenoid capture

Target Material Comparison

Hg compared at 10 GeV and 24 GeV

$$\frac{N_{10\,\text{GeV}}^+}{N_{24\,\text{GeV}}^+} = 1.07 \qquad \frac{N_{10\,\text{GeV}}^-}{N_{24\,\text{GeV}}^-} = 1.10$$

C compared at 5 GeV and 24 GeV

$$\frac{N_{5\,\text{GeV}}^{+}}{N_{24\,\text{GeV}}^{+}} = 1.90 \qquad \frac{N_{5\,\text{GeV}}^{-}}{N_{24\,\text{GeV}}^{-}} = 1.77$$

Hg at 10 GeV compared with C at 5 GeV

$$\frac{N_{\text{Hg},10\,\text{GeV}}^{+}}{N_{\text{C},5\,\text{GeV}}^{+}} = 1.18 \qquad \frac{N_{\text{Hg},10\,\text{GeV}}^{-}}{N_{\text{C},5\,\text{GeV}}^{-}} = 1.22$$

Target Choice

- A solid target design may be possible
- Target changing scheme is difficult

- Liquid mercury jet looks viable chosen as baseline
- Await exprimental results from MERIT (MERcury Intense Target) experiment at CERN
 - PS 24 GeV beam, 2.8 \times 10 13 protons on 1.2 mm \times 1.2 mm beam spot
 - Peak energy deposition 180 J/g
 - Beam on target April 2007
- A liquid lead alloy with low melting point may be safer option

Pion Distribution and Energy Choice

MARS15 output suggests optimum proton beam energy range of 5–15 GeV.

Harp Data for Aluminium

Harp Data for Aluminium, 2

Pion Capture/Decay Channel

Target is a tilted 20 cm long Ta rod inside a 20 T solenoid International project to optimize solenoid strengths and positions for maximum transmission.

ISS DECISIONS

Front-End Schemes

- 5 MHz and 201 MHz systems have enough acceptance to capture entire production
- 88 MHz into one bunch has insufficient longitudinal acceptance
- 88 MHz might be suitable into \sim 25 bunches but not yet investigated

US Study 2a: Neuffer Capture Scheme

Longitudinal Capture Efficiencies

	Capture efficiency	signs	efficiency $ imes$ signs	
5 MHz	39%	1	39%	OK
5 MHz+phase rotation	$\sim 60\%$	1	60%	good
88 MHz	$\sim 15\%$	1	15%	poor
88 MHz + Neuffer	$\sim 48\%$	2	96%	very good
201 MHz Induction linacs	56%	1	56%	good
201 MHz + Neuffer	48%	2	96%	very good

Consequences for Proton Driver

Proton Bunch Structure on Target

- Choose 50 Hz repetition rate
 - Lower rate increases charge per bunch and makes bunch compression harder
 - Higher rate increases RF wall power demand
- Choose trains of \sim 4 bunches
 - Ease bunch compression, fewer acceptable if bunching problem solved
- Spacing between bunches \geq 400 ns to allow use of Neuffer scheme

Consequences for Proton Driver

Spacing between Proton Bunches

16 μ s between bunches is a good compromise to

- Avoid mercury cavitation and target density loss
- Help top up RF and correct field gradient droop
- Reduce beam loading in downstream FFAG acceleration system

Ionisation Cooling

- 1. Liquid hydrogen absorbers remove momentum in all directions
- Multiple scattering increases transverse emittance 2.
- 3. RF restores longitudinal momentum, giving overall transverse momentum decrease

Muon Ionization Cooling Experiment

MICE R&D

Cooling v. Detector Size

Assuming two detectors, total cost minimum for 50 m of cooling.

Optimising Muon Decays per Year

	Rotation	Cooling	Trans. Acc.	signs	μ/π	μ p.a.
			π mm.mrad			×10 ²¹
5 MHz	none	no	30	1	0.08	0.19
44/88 MHz	RF	yes	15	1	0.066	0.21
201 MHz US2	Induction	yes	15	1	0.17	0.54
201 MHz US2a	Neuffer	yes	30	2	0.17	1.07

- 201 MHz with Neuffer and two detectors reaches design goal of 10²¹ muons per annum
- 88 MHz fails to meet requirements because of small capture phase space and only one muon sign
- 5 MHz fails because of decay loss, no cooling and one muon sign

Muon Acceleration

Tasks

- Compare different schemes on an equal footing
 - RLA, scaling FFAG, non-scaling FFAG, isochronous FFAG.
 - implications of keeping both sign muons.
 - need improved tracking codes for non-scaling FFAG designs in this parameter regime.
- Prepare scenarios for different values of acceptance (transverse and longitudinal)
- Consider matching between accelerator subsystems
- Consider both improved performance and relative costs

Dogbone RLA

- Linear pre-acceleration 273 MeV/c to 1.5 GeV
- Symmetric 'Dogbone' RLA, 3 passes, 1.5 GeV to 5 GeV
- Accelerates both μ^+ and μ^-
- FFAG cannot handle low energy (\lesssim 3 GeV), high frequency

FFAGs for Muon Acceleration

Scaling Field $\propto r^k$; large apertures; tune constant; orbit variation up to 0.5 m; low frequency RF 5–25 MHz.

- *Non-scaling* Linear elements; large apertures; resonance crossing; tiny orbit variation; high frequency RF 200 MHz.
- *Isochronous* Nonlinear fields; Q_v constant, Q_h varies; long insertion straights for injection, extraction and collimation; any RF frequency.
 - Schönauer Weakly isochronous; constant tune; RF ~200 MHz.

FFAG Neutrino Factory Issues

See Shinji Machida's Talk

- Transverse acceptance
 - Not clear which type of FFAG is most suitable.
- Dynamic aperture
 - Detailed study only for isochronous
- Collimation
 - · Constant tune aids capture efficiency
- Choice of acceleration method
 - Isochronous, gutter, RF bucket
- RF frequency choice addressed above

ISS Thoughts

- Scaling FFAG (non-isochronous) requires low frequency RF ($\sim 5\,\text{MHz})$
 - \implies low gradients
 - \implies decay losses
- Non-scaling FFAGs (5-10 GeV, 10-20 GeV)
 - amplitude dependent time slip causes energy spread and particle loss
 - costly to correct
- RLA synchrotron motion can cancel amplitude slip effects
- Dogbone RLA may be a (less expensive) solution up to 10 GeV, followed by one or two FFAGs.

FFAG Design and R&D

- POP and 150 MeV scaling proton FFAGs at KEK
- Spiral FFAG at Kyoto University
- Low frequency RF cavities and high frequency 201 MHz RF cavities studied in Japan
- SC FFAG magnets for scaling machines at KEK
- EMMA (non-scaling electron test model) in UK
- Proposals to build proton therapy unit based on a non-scaling FFAG with sc technology at IHEP Beijing.

EMMA using ERLP linac at Daresbury Laboratory

Decay Rings

Issues

- Consider different ring geometries (racetrack, triangular)
- Design implications of final energy (20 v. 50 GeV)
- Optics requirements v. beam emittance (arcs, injection, decay straights)
- Implications of keeping both sign muons (one or two rings?)
- Can we handle two simultaneous baselines?
- Radiation issues from 10²¹ useful neutrinos per year

Racetrack Option

Triangular Option

 \sim 300 m production straights; two detector sites; efficiency \sim 48%; vary apex angle by inserting extra cells in vertical straight.

ASTeC.

Triangular Option

Triangular Option

Detector Sites

- Physics requirements are for two detector sites at medium (2500–3500 km) and long (7000–75000 km) range baselines.
- Racetrack decay ring is more flexible but will point to only one detector.
 - \implies Two separate rings and tunnels.
 - \implies Alternate between μ^+ and μ^- in each ring or devise a counter-rotating scheme with both sign muons in each ring.
- Triangles fit into same tunnel and point to two detectors
 - ⇒ Designs for 20 GeV and 50 GeV would fit in same tunnel
 - \implies Limited choices in detectors and NF sites
 - \implies One detector site may need to be new

NF Sites and Detector Combinations for Triangular Ring

NF site	Detector 1	Distance	Detector 2	Distance	Apex angle	Angle to vertical
		(km)		(km)	(deg)	(deg)
BNL	Homestake	2525	Arlit	7369	53	28
	WIPP Carlsbad	2883	Arlit	7369	48	0.7
	Homestake	2525	Ghana	7300	47	7.9
FNAL	Norsaq	3532	N. Argentina	7634	77	45
JPARC	Daya Bay	2914	Oulu	7073	98	80
	Daya Bay	2914	NW Territories	7300	60	35
CERN	Norsaq	3577	INO, Pykara	7158	63	43
	Baksan	2911	Venezuela	7615	50	1.2
RAL	Norsaq	2806	INO, Pykara	7630	60	33.3
	Oulu	2075	N. Brazil	7300	46	15
	Crete	2751	WIPP Carlsbad	7513	49	0.9

Oulu – Finland; Arlit – Niger; Norsaq – Greenland; WIPP – Waste Inspection Pilot Plant, New Mexico; Daya Bay – S. China; INO – Indian Neutrino Observatory; Baksan – SAGE project, Georgia;

Green indicates a proposed new detector site.

For greatest efficiency, apex angle should be as small as possible and ring almost vertical.

Scoping Study Decisions

- Proton energy: 5–15 GeV
- Proton driver bunch structure: \sim 4 bunches spaced by ${\sim}16\,\mu\text{s}$
- Proton bunch length: ~2 ns rms
- Repetition rate: \sim 50 Hz
- Target: baseline is liquid mercury
- Pion collection: 20 T solenoid capture system
- RF frequency: 201 MHz
- Phase rotation: baseline is Neuffer bunched beam rotation scheme
- Cooling: baseline is 50 m of ionisation cooling
- Acceleration: No decision yet
- Muon decay ring: choice is site dependent

