SYNCH

USER'S GUIDE
 1993

A. A. Garren
A. S. Kenney
E. D. Courant
A. D. Russell
M. J. Syphers

SYNCH-A Computer System for Synchrotron Design and Orbit Analysis.
A. A. Garren and A. S. Kenney, Lawrence Berkeley Laboratory
E. D. Courant, Brookhaven National Laboratory
A. D. Russell, Fermi National Accelerator Laboratory
M. J. Syphers, Superconducting Super Collider Laboratory

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

SYNCH*
 A PROGRAM FOR DESIGN AND ANALYSIS OF SYNCHROTRONS AND BEAMLINES

USER'S GUIDE

A. A. Garren
A. S. Kenney
E. D. Courant
A. D. Russell
M. J. Syphers

[^0]
CONTENTS

1.0 INTRODUCTION 1
1.1 Applications 1
1.2 SYNCH Language 1
1.3 History 2
1.4 Documentation 2
1.5 Acknowledgments 2
2.0 COMPUTER ENVIRONMENT 3
2.1 Program Organization 3
2.2 Files 3
3.0 CALCULATIONS PERFORMED 5
3.1 Matrix Definition and Operations 5
3.2 Betatron Function Calculations 7
3.3 Particle Beam Calculations 7
3.4 Closed Orbit Calculations 7
3.5 Particle Tracking 7
3.6 Non-linear Transformation Calculations 8
3.7 Element Misalignment Calculations 8
3.8 Orbit Correction Calculations 9
3.9 Fitting Routines 9
4.0 SYNCH STATEMENTS 11
4.1 Statements 11
4.2 Conventions 11
4.3 Statement Diagram Conventions 11
4.4 General Statement Format 12
5.0 SYNCH COMMANDS 13
ACT - Activate Statement(s) 13
BEP - Plot Lattice Functions 15
BEST - Periodic Beta Functions, Stored for Plotting 17
BETA - Betatron Function of a Matrix Representing a Period 19
BMIS - Begin Misalignment Mode 21
BML - Beam Line Definition 23
BVAL - Particle Beam Definition 27
C - Comment 29
CALC - Calculator Simulator 31
CALL - Invoke a SYNCH Subroutine 35
CYA - Beta Functions and Matrices of Cyclic Permutations of Elements 37
CYAE - Beam Envelope Calculation 39
CYC - Periodic Beta Functions Through a Lattice Period 41
CYEM - Beam Emittance Calculation 43
DEACT - Deactivate Statement(s) 45
DEQ - Transformations Defined by Differential Equation Integration 47
DRF - Drift Space Definition 49
ECHO - Print Out Input Statements 53
EMIS - End Misalignment Mode 55
END - Mark End of SYNCH Subroutine 57
EQU - Equate Matrices 59
FITB - Fit Betatron Functions 61
FITQ - Fit Betatron Tunes 63
FITR - Fit matrix elements 65
FITV - Vary Two Parameters to Fit Values of Beam Coordinates 67
FXPT - Closed Orbit Calculation 69
IBET - Enter Initial Values of Betatron Functions 73
INCR - Increment an Input Parameter 75
INV - Invert a Matrix 77
INV2 - Rotate a Beamline 180° and Reflect It 79
IOUT - Write a compressed lattice file 81
KEEP - Save selected files 83
KICK - Dipole Kicker Magnet or Field Error Definition 85
LIST - Define List of Elements 87
MAG - Magnet Definition 89
MAGS - Magnet definition with errors 93
MAGV - Define a Vertically Bending Magnet 95
MAP - Non-linear Transformation Definition 97
MAT - General Matrix Definition 99
MAT3 - Define Transfer Matrix 101
MESH - Loop Through SYNCH Subroutine Variables 103
MMM - Matrix Multiplication 105
MOVE - Perform an Element Misalignment 107
MXV - Matrix-Vector Multiplication 109
NECHO - Suppress Printing of Input Statements 111
NPOL - Define N-pole Magnet 113
OPEN - Open special output files 115
ORBC - Calculate Closed Orbit Corrections 117
PAGE - Skip to Start of Next Page 119
PARA - Define a Parameter Value 121
PBML - Print Beamline 123
PCYC - Select Restricted CYC Print List 125
PRNT - Print Element Parameter 127
PRTV - Print a List of Vectors 129
PRV7 - Print a List of Particle Vectors 131
PVEC - Define Particle State Vector 133
RAND - Generate Random Number 135
REF - Matrix Reflection 137
REM - Insert Remark in Output Listing 139
REPL - Replace One Parameter With Another 141
ROT - Rotate a Beamline Element 143
ROTZ - Define Rotation Matrix 145
RUN - Start of Run 147
SELCT - Insert Delimiter Marker 149
SHF - Define a 3×3 Shift Matrix 151
SHF7 - Define a 7×7 Shift Matrix 153
SIZE - Define Size of Matrices 155
SMIN - Access MINUIT from SYNCH 157
SOL - Solenoid 159
SOLV - General Fitting Routine 161
STOP - End of Job 167
SUB - Define a SYNCH Subroutine 169
SUM - Scalar Summation 171
SXTP - Sextupole Definition 173
TRK - Track Particles Through Beamline 175
TRKB - Track Betatron Functions 177
TRKE - Track Beam Envelopes 179
TRKM - Track Through Non-linear Elements 181
UPDAT - Create New Input File 183
VAR - Define Variable by Current Value in Command 185
VEC - Vector Definition 187
VPAR - Loop Through SYNCH Subroutine on a Diagonal 189
WBE - Write Betatron Functions of Matrices 191
WFL - Print Out Internal Storage 193
WMA - Write Matrices 195
$=-$ Equate to Floating Point Number 197
** - Raise a Matrix to a Power 199
Period (.) - Comment 201
6.0 MISCELLANEOUS FEATURES 203
6.1 The Negative of a Symbolic Floating Point Number 203
6.2 Symbolic Entry for Inverse of a Matrix 203
6.3 Internally Defined Matrices 203
6.4 Predefined Constants 204
6.5 Initially Deactivated Statements 204
7.0 NON-LINEAR TRANSFORMATIONS 205
7.1 MAP-Point Transformations 205
7.2 DEQ - Differential Equation Transformations 206
8.0 MATHEMATICAL FORMULATION 209
8.1 Transfer Matrices and Beamlines 209
8.2 Linear Elements 211
8.3 Multipole Magnets 216
8.4 Betatron Functions and Dispersion 217
8.5 Particle Beam Envelopes 221
8.6 Closed Orbit Calculations 222
8.7 Particle Tracking 223
8.8 Magnet Misalignment Calculations 224
8.9 Parameterization of Transport and Period Matrices with X-Y Coupling 225
REFERENCES 231
APPENDIX A. FILES 1
APPENDIX B. SAMPLE RUNS 1
B. 1 Calculation of Periodic Lattice Functions 1
B. 2 Fitting of Tunes in a Phase Trombone 1
B. 3 Closed Orbit Calculations 1

1.0 INTRODUCTION

SYNCH is a computer program for use in the design and analysis of synchrotrons, storage rings, and beamlines. It has a large repertoire of commands that can be accessed in a flexible way. The input statements and the results of the calculations they invoke are saved in an internal database so that this information may be shared by other statements. SYNCH is the first accelerator program to organize its input in the form of a language. The statements, which resemble sentences, provide a natural way of describing lattices and invoking relevant calculations. The organization of the program is modular, so that it has been possible to expand its capabilities progressively.

1.1 Applications

The lattice is described by statements defining the beamlines and the elements-drifts, dipoles, quadrupoles, sextupoles, other non-linear elements, and other beamlines - of which they are composed. Beamline statements may refer to the superperiods, cells, transport lines, or substructures of these. Each element-defining statement results in the calculation of the corresponding linear transfer matrix. These matrices can be manipulated in various ways; for example, they can be multiplied together to construct the matrices corresponding to a particular beamline.

Having generated the lattice of a complete ring, superperiod, cell, or transport line, one may obtain linear properties, especially the betatron functions, of the corresponding beamline; closed orbits and linear properties corresponding to momentum deviations and/or magnet misalignments can be determined; and particles with arbitrary initial conditions can be tracked repetitively around the machine. One may also calculate emittances, damping times, and other properties of electron rings.

To design machines, the program adjusts the lengths or strengths of certain elements in order to obtain specified orbit properties. Typical examples are:

Gradients of a cell's quadrupoles may be adjusted to obtain specified cell phase advances.

Lengths and/or gradients of quadrupoles and drifts in a long straight section insertion may be varied to obtain a match of the betatron functions to those of the adjacent cells and to produce a low-beta waist at its interaction point.

1.2 SYNCH Language

The input file for a SYNCH run consists of a user-determined sequence of statements, each containing a label or name, a command keyword specifying an operation or definition, and data. The data may be numerical or the names of previously defined statements. Most statements either define parts of a machine, invoke calculations, or both.

In order to scan systems over ranges of parameters, sets of statements can be placed together in subroutine-like blocks that may be called sequentially with different parameter values. These blocks are also used by the fitting commands.

1.3 History

SYNCH was first written in 1964-5, primarily for use in the 200 BeV design study. These versions did not have a general fitting procedure, but semi-analytic routines for designing cells and long straight sections were included. In 1966-7 the program was rewritten for the CDC 6600 and later adapted for the CDC 7600. The modular structure of SYNCH has facilitated addition of new features up to the present time, including a general fitting routine, calculations of electron-beam properties, thin-lens multipoles, orbit corrections and nonlinear calculations.

The original SYNCH version ran on IBM 704 series computers. In 1968 the CDC version was converted for use on IBM 360 computers, periodically updated to correspond to the current CDC version, and adapted for a Fujitsu computer in 1979. Subsequently a version for VAX computers was made, which was later used as the basis for another VAX version conforming to the ANSI FORTRAN 77 standard. In the period 1985-92 a machine-independent version was developed using the Code Management System (CMS), which permits one to maintain functional identity between versions for different platforms.

1.4 Documentation

The first versions of the program were documented in a Berkeley Internal Report by Eusebio, Garren, and Kenney. ${ }^{[1]}$ From time to time this document was informally updated.

The first edition of the present document, written primarily by M. Syphers, ${ }^{[2]}$ was based on the rather fragmentary documentation then existing together with comments included in the FORTRAN listing. This second edition refers to the current standard FORTRAN 77 version of the program. It documents features in the program not discussed in the previous edition of the manual as well as features added to the program subsequently.

1.5 Acknowledgments

The authors thank the many people who have contributed in various ways to SYNCH. J. Eusebio did much of the coding of the earliest version. Conversion to new platforms has been done by B. Miller, W. Trziack, B. Wu, A. King, K. Chiba. Graphics has been added by R. Hinkins, T. Barts, and T. Sen and coding on sextupoles and orbit correction by B. Autin. Many suggestions for enhancements were made by Trziack. Important tests have been made by K. Y. Ng and A. Ruggiero and a translator to MAD format was written by J. Niederer.

We especially thank David Johnson for his interest, suggestions, and other aid over many years, and Don Edwards and Helen Edwards for their strong support and encouragement. Finally, we thank the users who have transmitted their suggestions and observations about the program.

2.0 COMPUTER ENVIRONMENT

2.1 Program Organization

SYNCH has been organized to be used in a very flexible manner. The user builds the synchrotron structure by a series of input statements that describe the accelerator. Other statements invoke specific calculations. These statements comprise a special-purpose language.

Each statement contains three components - a name or label, a command, and a set of data. The name is an arbitrary set of characters which can be used as data in subsequent statements to refer to the element defined by the statement. The command is a particular set of characters that characterize the nature of the element described and of the calculations to be performed. The data completes the specification of the element and provides input parameters for the command. The statement, together with quantities calculated, such as matrices, are stored for use by subsequent statements.

The statements are processed sequentially as entered in the input file. Labels or names that are referred to in a statement must have been previously defined if the command invokes any calculations.

A SYNCH subroutine is a set of statements that are grouped together by use of the SUB and END commands for execution, when invoked by certain commands, for example CALL, as a unit. A SYNCH subroutine must occur in the input file before any statement that invokes it.

2.2 Files

The SYNCH program is written in FORTRAN. Input and output are handled by associating files with the FORTRAN logical unit numbers used in the READ and WRITE statements. The details of establishing these associations are unique to each system (e.g., VAX, Cray, or Sun). Input and output files are assigned to logical units 2 and 3 respectively. A complete description of files generated is given in Appendix A.

3.0 CALCULATIONS PERFORMED

This section describes the calculations that may be performed. Detailed descriptions of individual commands are left to Chapter 5, SYNCH Commands. Details concerning the mathematical methods employed by the program, such as descriptions of beamline element matrices, may be found in Chapter 8, Mathematical Formulation. A complete list of all commands organized by topic is given in Table 3.1.

3.1 Matrix Definition and Operations

SYNCH allows the definition of various standard beamline elements which act on the particle coordinates. Transfer matrices are calculated for linear elements upon execution of their defining statements. The MAG statement defines a bending, focusing, or combined-function magnet. Bending is in the horizontal plane. The MAGV statement is used to define a magnet which bends in the vertical plane. The DRF statement is used to define a drift region. Other elements include the sextupole magnet SXTP, the n-pole thin lens NPOL, and the delta-function dipole kick KICK statements. The MAG, MAGV, DRF, and KICK commands generate matrices which act on a state vector $\left(x, x^{\prime}, y, y^{\prime}, d s, d p / p\right)$. The effects of the SXTP and NPOL commands on state vectors are not linear and are handled by separate subroutines in SYNCH. The user may also define linear or non-linear elements by use of the MAT, MAT3, DEQ and MAP statements.

Once defined, various operations may be performed upon the matrices of the linear elements. In particular, MMM multiplies two or more matrices and stores the result in a newly defined matrix; INV determines the inverse of a matrix; MAGS and MOVE misalign the element; ROT rotates a beam element about the beam direction; REF generates the matrix of the reflection of a beamline, and the ${ }^{* *}$ command allows the repeated multiplication of a matrix with itself. A particular sequence of beamline elements, which may contain linear and non-linear elements, may be created using the BML statement. This statement may be used recursively, i.e., a BML statement may contain as part of its defining sequence the names of other BML statements.

The units used for input are arbitrary, but must be consistent throughout. For instance, one could enter all lengths in meters, all field strengths in Tesla, Tesla/meter, and so forth. In this case, the betatron functions that are calculated will be in units of meters, etc.

Table 3.1. SYNCH Program Commands, by Topic.

Program Control	ACT	DEACT	RUN	SIZE	STOP
SYNCH Subroutines	CALL	END	INCR	MESH	REPL
	SUB	VPAR			
Mathematical Operations	CALC	(SIN	SQRT	1/X	etc.)
Beamlines	PARA	RAND	SUM	VAR	$=$
Element Definitions	BML	LIST			
Operations on Transfer Matrices	EQU	INV	INV2	MMM	MXV
	REF	ROT	ROTZ	**	
General Matrix/Vector Definitions	MAT	MAT3	VEC		
Betatron Function Calculations	BETA	CYA	CYC	IBET	TRKB
	TRKE				
Particle Beam Calculations	BVAL	CYAE	CYEM		
Fitting Routines	FITB	FITQ	FITR	FITV	SMIN
Closed Orbit Determination	FXPT	PVEC	TRK	TRKM	
and Particle Tracking					MAG
Element Misalignments	BMIS	EMIS	MAGS	MOVE	SHF
Orbit Correction	SHF7				
Plotting	ORBC				
Files	BEP	BEST	TRKB		

3.2 Betatron Function Calculations

The linear betatron functions describe the amplitude and phase of the transverse betatron oscillations throughout an accelerator and/or beamline. The formal language of betatron motion used is that of Courant and Snyder. ${ }^{[4]}$ See also Section 8.4, Betatron Functions.

The value of each betatron or dispersion function corresponding to a particular matrix may be obtained by use of a BETA statement. All of them may be printed out by use of the WBE command. Given an initial set of betatron functions, which may be input directly by IBET or obtained from a previously defined matrix, the betatron functions may be tracked through a beamline by using the TRKB command. The betatron functions at each point of a periodic section of a circular accelerator are generated by the CYC command.

3.3 Particle Beam Calculations

The beam envelopes are calculated by CYAE or TRKE using the betatron functions together with specified values of the emittances and momentum spread of the beam specified by BVAL. For electron machines, one can compute natural emittances, damping, rf quantities, etc. using the CYEM command.

3.4 Closed Orbit Calculations

SYNCH has the ability to compute the closed orbit through a circular accelerator or beamline period for a particle of any momentum. The accelerator may consist of linear and/or non-linear elements. The user must input an initial guess for the closed orbit at some azimuth using a PVEC statement. Then, with the FXPT statement, the closed orbit at that point is found and propagated through the entire accelerator. The transfer matrices of the beamline elements are linearized about this closed orbit and the betatron functions from these new matrices are printed out along with the closed orbit.

The FXPT calculation uses 7×7 matrices and hence allows for the study of horizontal-vertical coupling of the betatron motion. The single-turn transfer matrix for the point in question is thus printed out as well as the eigenvalues and eigenvectors of the 4×4 submatrix representing $x-y$ motion. The eigenvectors may be tracked through the accelerator.

3.5 Particle Tracking

A particle may be tracked repeatedly through a beamline using the TRK command. The initial trajectory and $d p / p$ of the particle is input with the PVEC statement. The trajectory of the particle may be output at all points in the beamline each transit or at selected locations every so many transits. The beamline may consist of linear and/or non-linear elements.

3.6 Non-linear Transformation Calculations

Transformations, other than the standard linear ones, may be used in certain tracking and other operations by means of the MAP or DEQ statements. The former define point transformations, the latter those that result from integration of differential equations. Each transformation is implemented through a corresponding FORTRAN subroutine. SYNCH includes twenty subroutines of each type; ten reserved for built-in subroutines, and ten for user-defined ones. Some of the built-in subroutines are implemented, the rest of these and all of the user-defined ones are included in the form of dummy subroutines.

MAP - Point Transformations

SYNCH has 10 subroutines MAP0, ..., MAP9 reserved for built-in transformations and 10 subroutines MAP10, .., MAP19 for user-defined transformations. Any of the dummy user subroutines may be replaced by a FORTRAN subroutine that produces the desired transformation of particle coordinates, compiled and linked together with a SYNCH object module, thus producing a new executable module.

To access a MAP subroutine, the user defines a beamline element with the corresponding MAP command and includes it in the appropriate beamline defined by a BML command. Whenever this MAP element is encountered while tracking, the current particle state vector and parameters specified in the MAP statement are passed to the respective subroutine, which is then executed.

DEQ - Differential Equation Transformations

Parallel to the MAP subroutines, SYNCH has 10 subroutines DEQ0, ..., DEQ9 reserved for built-in transformations and 10 subroutines DEQ10, ..., DEQ19 reserved for user-defined transformations. A DEQ subroutine is invoked by the differential equation routine in SYNCH for each integration step.

To access a DEQ subroutine, one defines a beamline element using a DEQ statement. When this element is encountered while tracking, the particle coordinates and the parameters specified in the DEQ statement are passed to the respective internal DEQ subroutine and to the differential equation routine which performs the integration.

Use of the MAP and DEQ commands is described in Chapter 5, and examples of the internal FORTRAN subroutines are shown in Chapter 7.

3.7 Element Misalignment Calculations

The effects of magnet misalignments on the closed orbit of the accelerator may be studied. There are two possible approaches to the problem. One approach involves the MAGS command, which defines a magnet with transverse misalignments. The BMIS command must first be issued. In this mode, the new closed orbit due to the misalignments is calculated using a CYC statement instead of the dispersion function. The EMIS command will end the misalignment mode.

The second approach requires the use of the MOVE command. Here, rotational misalignments about the s-axis as well as transverse misalignments may be invoked. This method uses a FXPT statement to find the new closed orbit and may be used to study coupling effects of the transverse motion in each plane.

For more information concerning these methods, see Section 8.8.
As aids for misalignment calculations, LIST and RAND were created. LIST allows one to generate a list of elements which can be used to substitute successive calls for a particular transfer matrix. RAND generates a random number uniformly distributed on the interval $[-1 / 2,1 / 2)$.

3.8 Orbit Correction Calculations

The ORBC command calculates the correction of the closed orbit through an accelerator with field errors. The name of a FXPT statement is used to define the initial orbit. The beamline used in the FXPT statement contains the name of the elements at which the displacements are measured and the name of the elements which are used for corrections. The optimized correction element strengths are calculated and printed out.

3.9 Fitting Routines

Several fitting routines are present allowing one to produce desired values of betatron functions at specified points. For instance, FITQ varies the parameters of specified magnets to create specific horizontal and vertical phase advances for a particular portion of a beamline. Likewise, FITB may be used to fit other betatron functions to desired values. The SOLV command is more general in that it can vary any number of parameters subject to constraints in order to generate desired values of several betatron functions at once.

The SOLV command uses the MINUIT ${ }^{[6]}$ minimization routines. All MINUIT commands may be accessed by using the SMIN command.

4.0 SYNCH STATEMENTS

4.1 Statements

SYNCH statements are implemented as 80-character records structured with specifically designated fields. Data must be appropriately right or left justified in their fields.

4.2 Conventions

A SYNCH input file is made up of a set of statements beginning with a RUN statement and ending with a STOP statement. The statements in between are composed of various parts: a label (or name), a command, and assorted input parameters which depend upon the nature of the statement. The purpose of Chapter 5 is to describe the statement associated with each command. The descriptions include a Statement Diagram, definitions of all the associated parameters, and a short paragraph about the command and its uses. Examples are included in many of the descriptions. Examples of runs are given in Appendix B. The commands are arranged alphabetically. For a cross-reference of commands organized by categories, see Table 3.1.

4.3 Statement Diagram Conventions

Each description of a command is preceded by a Statement Diagram. The conventions used in these diagrams to describe various types of elements, variables, and commands are as follows:

1. Input is fixed format. Data items must be aligned in specific fields. The lengths of the fields and the justification within the fields are determined by the type of data item (integer, floating point, character).
2. Items in upper case and special symbols (e.g., =) are keywords and must appear exactly as shown.
3. Items in lower case represent data to be supplied by the user.
4. Continuation records: certain commands require additional lines containing input data. Other commands, such as BML, may require them if there is too much data to fit on one line. These continuation lines must all be blank in columns 1-20. Data begins in column 21.

Note that SYNCH distinguishes between upper and lower case characters. Command names must always be entered in upper case. Case must always be used consistently for named data: XYZ , xyz, and XyZ are treated as three distinct names.

4.4 General Statement Format

COLUMNS

1 Used for the commands or options C, P, "-", and ".".
2-6 name-left justified. Label of the statement. Used by other statements to refer to this one. In general, names are unrestricted; however there must be an exact correspondence between the original name definition and subsequent references to it. If cmd is CALC, PARA, SUM, VAR, or $=$, the name should not have the appearance of a floating-point number. One should not use names of the internally defined matrices and constants (Sections 6.3-6.4).
8-12 cmd-left justified, upper case. The keyword of the particular command.
13-15 mmm -right justified Integer, up to 3 digits. Used to specify options.
17-19 nnn-right justified Integer, up to 3 digits. Used to specify options.
21-80 data-Input data for the particular command. The data may be alphanumeric, floating point, or integer depending upon the command:
alphanumeric-(CH) Names or labels, left justified in 5-column fields: 21-25, 26-30, 31-35, etc.
floating point-(FP) Decimal numbers, entered in 10-column fields 21-$30,31-40$, etc. The decimal point must be included and the string can be placed anywhere within the field.
integer-(IN) Integer values, right justified in 5-column fields 21-25, 2630, 31-35, etc.
symbolic floating point - (CH) Label of a floating-point parameter previously defined by a CALC, PARA, SUM, VAR, or "=" statement. The character string must be left justified in the same 10-column data fields which would otherwise contain floating point numerical input.
special characters-The characters $+,-,{ }^{*}, /$, and \# have special meanings when used within labels. In general, the characters,+- , * and / should not be used as the first character in a label. When used as the first character in a label, the \# symbol has special meaning to the BEST, CY..., and FXPT, commands. See the PCYC command for details. Also see Chapter 6 for use of other special symbols.

5.0 SYNCH COMMANDS

ACT - Activate Statement(s)

The ACT statement activates a specified list of SYNCH statements.

m (IN) Number of statements to activate.
$=0$, or blank, Activate the command statements specified in the data fields.
The number of statements activated is determined from the list. The list may be continued on successive lines.
>0, Activate m consecutive statements, beginning with stm1. Only one statement, stm1, should be named in the data field.
stm1, ... (CH) Name(s) of statement(s) to be activated.
ACT restores (activates) execution of a specified set of SYNCH command statements. During execution of the program, only active commands are executed.

The ACT statement acts only on previously defined inactive statements. The effect of the ACT statement is seen only if the newly activated statement is subsequently executed. This can occur only if the statement is contained in a SYNCH subroutine which is invoked after the ACT statement is processed.

SEE ALSO: Section 6.5, Initially Deactivated Statements DEACT

BEP - Plot Lattice Functions

The BEP statement creates a plot of the β (amplitude) and η (dispersion) functions through a beamline and a schematic diagram of the magnet layout.

name (CH) Reference name.
m (IN) Selects plotting of β or $\sqrt{\beta}$.
Sets number of tick marks for the left-hand y axis.
≥ 0 or blank, Plot β.
<0, Plot $\sqrt{\beta}$.
$= \pm 99,0$, or blank, The program selects the number of tick marks to draw.
$\neq \pm 99,0$, or blank, Draw tick marks to divide the axis into $|\mathrm{m}|$ intervals.
n
(IN) Sets number of tick marks for the right-hand y-axis (dispersions, η_{x} and/or η_{y}).
$=0$ or blank, The program selects the number of tick marks to draw.
$\neq 0$, Draw tick marks to divide the axis into $|\mathrm{n}|$ intervals.
ncy (CH) Name of the BEST or TRKB command which computed and stored the beta functions.
mode (IN) Define horizontal plot layout.
$=0$ or blank, The x -axis markers are determined by the path- length stored along the beamline.
$=1$, Place the zero-point on the x -axis at the left-hand end.
$=2$, Place the zero-point in the middle of the x -axis.
ip1, ip2 (IN) The data are plotted from positions ip1 through ip2 in the beamline.
$=0$ or blank, Plot for the entire beamline.
$\neq 0$, Plot from beamline position ip1 to position ip2. If either of ip1 or ip2 is omitted or 0 , default to beginning or end, respectively, of beamline.
bmax (FP) Optional. Plot limit. Maximum β function value.
etamn (FP) Optional. Plot limit. Minimum dispersion function value.

BEP

etamx (FP) Optional. Maximum dispersion function value.
Note: If a value is entered for any one of bmax, etamn or etamx then values must be entered for all three.
iop1 (IN) Plot format selector.
$=0$ or blank, Annotates axes with labels and values.
$=1$, Axis labels are omitted but values are marked on the axes.
$=2$, There is no axis annotation. Labels and values are omitted.
iop2 (IN) Select curves to plot.
$=0$ or blank, Plot all four functions $\beta_{x}, \beta_{y}, \eta_{x}$, and η_{y}. The curves are distinguished by line type and, where available, by color, as follows:
β_{x}-Solid (red) line,
β_{y}-Chain dash (blue) line,
η_{x}-Dash (green) line,
η_{y}-Chain dot (green) line.
$=1,2,3$, or 4 , Plot $\beta_{x}, \beta_{y}, \eta_{x}$, or η_{y}, respectively. The single curve is plotted as a solid black line.

The BEP statement creates a plot of the amplitude (β) and/or dispersion (η) function(s) through a (portion of a) beamline. The data values plotted are those calculated and stored by the most recently executed BEST or TRKB command. The name of this most recently executed BEST or TRKB command must be entered in the ncy field of the BEP command.

To obtain plots, SYNCH must be run interactively. A dialogue is presented on the screen enabling the user to select on- or off-line output. On-line output immediately draws the plots to the screen. If off-line output is selected, a file will be created which the user can subsequently route to a hard-copy device.

The axis ranges are determined by the parameters bmax, etamn, and etamx if they are given, and by the data otherwise. Axis tick marks are generated internally based on the total range. The range for the horizontal axis is adjusted to maximize the length of the plot consistent with the value of mode.

SEE ALSO: BEST
 TRKB

BEST - Periodic Beta Functions. Saved for Plotting
The BEST command is used to create lattice function data in a form to be plotted by BEP. The BEST statement is equivalent to CYC in input format and function. In addition, it saves data for plotting by BEP.

SEE ALSO: BEP
CYC PCYC

BETA - Betatron Function of a Matrix Representing a Period
The BETA command assigns the value of one of the periodic betatron functions of a beamline to a named variable.

name $\quad(\mathrm{CH})$ Reference name of the variable to which the value is assigned.
m (IN) Index value specifying the betatron function to be used.

$$
\begin{array}{rlrl}
\mathrm{m} & =1, \mu_{x} & \mathrm{~m} & =11, \mu_{y} \\
& =2, \beta_{x} & & =12, \beta_{y} \\
& =3, \alpha_{x} & & =13, \alpha_{y} \\
& =4, \gamma_{x} & & =14, \gamma_{y} \\
& =5, \eta_{x} & & =15, \eta_{y} \\
& =6, \eta_{x}^{\prime} & & =16, \eta_{y}^{\prime} .
\end{array}
$$

mtrx
(CH) The name of the matrix defined by the beamline and calculated by an MMM or equivalent (e.g., CYC) command.

The matrix mtrx has been calculated using an MMM or equivalent command for a beamline defined by a BML statement. The betatron functions are computed for the beamline assuming periodic boundary conditions: the function values are equal at the beginning and end of the line. The BETA command assigns to the variable name the value (at the ends of the beamline) of the m-th betatron function derived from the matrix mtrx.

BMIS - Begin Misalignment Mode
The BMIS command invokes a special mode of operation of SYNCH to calculate the orbit distortions resulting from magnet misalignments.

The BMIS command enables a special mode of operation of SYNCH which is used to calculate the orbit distortions which result from magnet misalignments. While in this special mode, magnets defined by MAG statements are assigned horizontal and vertical transfer matrix elements $M_{13}=M_{23}=0$. The effects of magnet misalignments can then be simulated by appropriate translations of the particle's entrance and exit coordinates for the magnetic elements concerned.

The BMIS mode of operation is terminated and normal program operation restored by an EMIS statement.

SEE ALSO: EMIS

MAGS
Section 8.8, Magnet Misalignment Calculations

BML - Beam Line Definition

The BML statement defines a beamline as a sequence of elements specified in the order in which they are encountered by the beam.

name $\quad(\mathrm{CH})$ Reference name of the beamline.
m (IN) Reflection option selector.
$=0$ or blank, No effect.
$=-1$, Create a reflected version of the defining beamline.
a1, ... (CH) Names of elements or other beamlines.
The BML command defines a beamline as a series of elements, a1, a2, ..., ak, entered in order as "encountered by the beam." The individual elements may be primary elements (drifts, magnets, etc.), matrices representing other beamlines (see, e.g., MMM), or beamlines defined by other BML commands. (The name of the beamline being defined may not itself appear in the defining list: recursive definitions are not supported.) BML statements may occur in the input file before the elements making up the beamline are themselves defined. The BML command merely sets up a list of elements; it performs no calculations.

Blank fields in the input record are ignored. The beamline definition may be continued on successive lines.

When one beamline is included in the definition of another, the included beamline is expanded in place. The effect is as if the elements in the included beamline had been explicitly named. For example,

is completely equivalent to

for the beamline. C.

BML

Included BML's are properly expanded into their constituent elements, but an included MMM statement will be used exactly as it stands: as a single element. Thus, building on the previous example, adding

and defining

forces $* \mathrm{C}$ to be used exactly as written: as a beamline containing just four elements including the lumped element OBB. *C is NOT expanded to be equivalent to .C.

N (a positive integer) repetitions of a set of elements may be obtained by placing " N (" anywhere in the 5 -column field to the left of the set and ")" anywhere in the field to the right. The other spaces in the 5 -column fields must be blank. As an example, consider the following set of nested BML's

and the equivalent expanded form

The beamline SPRD is exactly the same for both definitions; it comprises the 35 elements listed explicitly in the second example.

Another example of the use of repetition is provided by the following.

The beamline .C represents a FODO-type cell. The equivalent expanded definition is

A reflected beamline is one in which the elements are traversed in the reverse order from the defining beamline. Reflection is obtained by setting $\mathrm{m}=-1$. (Parameter m need not be entered except to define a reflected beamline.) Note, however, that SYNCH will not reflect any of the constituent elements. The constituent elements must all be self-reflecting-magnets with equal edge angles, drifts, or MMM's of symmetric beamlines - or the results will be incorrect.

BVAL - Particle Beam Definition

The BVAL command specifies values of the emittances of a particle beam. The emittances are used by subsequent CYAE and TRKE statements for beam envelope calculations.

name (CH) Reference name.
m (IN) Define interpretation of pt.
$=0$ or blank, pt is the momentum of the beam particle $(\mathrm{GeV} / \mathrm{c})$
>0, pt is the kinetic energy of the beam particle (GeV)
n (IN) Set longitudinal dispersion print option. The subsequent CYC command that refers to the BVAL will print either $\eta_{s}=\delta s /(\delta p / p)$, the longitudinal dispersion, or $\eta_{t}=c \cdot \delta t /(\delta p / p)$ according to the value of n. If $\mathrm{pt}=0$, this parameter is ignored. $=0$ or omitted, Print the longitudinal dispersion η_{s} in the table of functions.
>0, Print η_{t} in the table of functions.
pt (FP) Momentum or kinetic energy of beam particles.
$=0$ or omitted, The emittances epsx, etc., are unnormalized* and no kinematic calculations are done.
>0, The emittances epsx, etc., are normalized* and the necessary kinematic calculations to convert to unnormalized values are done.
aw (FP) Atomic weight of beam particle. $=0$ or omitted, The mass of the electron is used. >0, Value, in multiples of proton mass.
epsx (FP) Horizontal emittance (mm-mrad).
epsy (FP) Vertical emittance (mm-mrad).

[^1]BVAL
epsl (FP) Longitudinal emittance $\left(\mathrm{mm}^{-} \% \mathrm{on}\right)$. Since epsl $=$ sigl \times sigp, one may input the rms value of $d p / p$ directly by setting epsl $=d p / p$ and $\operatorname{sigl}=1$.
sigl (FP) Bunch length (mm).

C - Comment
The \mathbf{C} statement inserts a line of text in the output listing.
Format 1:

Format 2:

.<--------	text

Format 3:

The comment commands, which do not conform to the SYNCH statement format standard, are used to insert a line of text in the output listing. Comments are indicated by a "C" or "." in column 1 of the record. Under formats 1 and 2 , text from columns $2-80$ is copied without change to the output file. The leading " \mathbf{C} " or "." is omitted. Under format 3 , the text field contains only a single character in column 2. This character is replicated in columns 2-132 of the line in the output file. Any printable character may be used.

When used within a SYNCH subroutine, the \mathbf{C} command enters the text in the output listing when the subroutine is defined and each time it is executed, except when it is invoked by a fitting command or when echoing is suppressed by the NECHO command. When using comments to document a subroutine, it is normally preferable to place the comments outside the subroutine.

SEE ALSO: REM
 PAGE
 .(Period)

CALC

CALC - Calculator Simulator

The CALC statement provides the functions of a hand calculator for use within a SYNCH program.

name $\quad(\mathrm{CH})$ Name of quantity calculated.
m (IN) Print control switch.
$=0$ or blank, Do not print results from calculator stack.
$=1$, Print calculator stack at end of calculation.
$=2$, Print calculator stack after every step.
$\mathrm{c} 1, \ldots \quad(\mathrm{CH})$ Calculator key names and names of previously defined variables.
The CALC command makes available within a SYNCH program the functions typically provided by a scientific hand-calculator. The CALC command is implemented in Reverse Polish Notation (RPN) and patterned on the Hewlett-Packard family of calculators. The key names (calculator commands) are adapted from the HP scientific calculators. The available calculator key-names are:

+	-	$*$	$/$	$1 / \mathrm{X}$	SQRT	$\mathrm{X} * \mathrm{X}$	$\mathrm{Y} * * \mathrm{X}$
EXP	LN	SIN	COS	TAN	ASIN	ACOS	ATAN
ABS	EEX	CHS	X-Y	X=Y	P-R	R-P	X=0
PI	RDN	RUP	ENTR	CLST			
STO	RCL	CLX	LSTX				
XLEY	XGTY.						

The calculator key-names are described in Table 4.1.
When issuing a STO (store to memory) or RCL (recall from memory) command, one must reference the name of a CALC, $=$, or PARA statement to provide the storage buffer.

More generally, the CALC command can reference itself; that is, it can be used recursively. If name appears also as one of the c_{i} fields in the parameter string, the value associated with name is used. The value defaults initially to 0 and is updated only when the CALCulation is completed.

The calculator is implemented using 5 registers, $x, y, z, t, x l$ in a stack. The x-register always contains the results of the latest calculation. The final result of the calculation is stored in name. The intermediate results are preserved in the stack and may be used by later CALC statements.

CALC

Examples:

In the following examples, the lengths lb and ldr 1 are subtracted from lhct and the result is stored as ldr2. They illustrate two completely equivalent ways of making the calculation.

Example 1:

Example 2: The same result is obtained by replacing the last 2 lines of the example by the single line

CALC

Table 4.1. Commands for Simulated RPN Calculator.
The notation (...) is used to denote the value contained in the ... register.

$+$	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow(\mathrm{y})+(\mathrm{x}),(\mathrm{y}) \leftarrow(\mathrm{z}),(\mathrm{z}) \leftarrow(\mathrm{t})$
-	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow(\mathrm{y})-(\mathrm{x}),(\mathrm{y}) \leftarrow(\mathrm{z}),(\mathrm{z}) \leftarrow(\mathrm{t})$
	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow(\mathrm{y}) *(\mathrm{x}),(\mathrm{y}) \leftarrow(\mathrm{z}),(\mathrm{z}) \leftarrow(\mathrm{t})$
/	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow(\mathrm{y}) /(\mathrm{x}),(\mathrm{y}) \leftarrow(\mathrm{z}),(\mathrm{z}) \leftarrow(\mathrm{t})$
1/x	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow 1 /(\mathrm{x})$
SQRT	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow \sqrt{ }(\mathrm{x})$
X*X	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow(\mathrm{x})^{* *} 2$
$\mathrm{Y}^{* *} \mathrm{X}$	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow(\mathrm{y})^{* *}(\mathrm{x})$
EXP	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow \exp ((\mathrm{x}))$
LN	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow \ln ((\mathrm{x}))$
SIN	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow \sin ((\mathrm{x}))$
COS	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow \cos ((\mathrm{x}))$
TAN	$(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow \tan ((\mathrm{x}))$
ASIN	$\left.(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow \sin ^{-1} 1(\mathrm{x})\right)$
ACOS	$\left.(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow \cos ^{-1} 1(\mathrm{x})\right)$
ATAN	$\left.(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow \tan ^{-1} 1(\mathrm{x})\right)$
ABS	$(\mathrm{xl}) \leftarrow(\mathrm{x}),\|(\mathrm{x})\|$
EEX	$(\mathrm{x}) \leftarrow(\mathrm{y})^{*} 10^{* *}(\mathrm{x})$
CHS	$(\mathrm{x}) \leftarrow-(\mathrm{x})$
X-Y	$(\mathrm{x}) \leftarrow(\mathrm{y}),(\mathrm{y}) \leftarrow(\mathrm{x})$
$\mathrm{X}=\mathrm{Y}$	Execute the following command if (x) = (y).
$\mathrm{P}-\mathrm{R}$	Replace the polar $(r=(\mathrm{x}), \theta=(\mathrm{y}))$ coordinates of a point by its Cartesian co-ordinates: $(x=r * \cos (\theta), \theta=r * \sin (\theta))$. $r=(\mathrm{x}), \theta=(\mathrm{y}):(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow \mathrm{x},(\mathrm{y}) \leftarrow \mathrm{y}$.
$\mathrm{R}-\mathrm{P}$	Replace the Cartesian (x, y) coordinates of a point by its polar (r, θ) coordinates. $x=(\mathrm{x}), y=(\mathrm{y}):(\mathrm{xl}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow r,(\mathrm{y}) \leftarrow \theta$.
$\mathrm{X}=0$	Execute the following command if (x) $=0$.
PI	$(\mathrm{x}) \leftarrow \mathrm{pi}=3.14159265358979$.
RDN	Roll down. Move the values in the stack thus: $(\mathrm{t}) \leftarrow(\mathrm{x}),(\mathrm{x}) \leftarrow(\mathrm{y}),(\mathrm{y}) \leftarrow(\mathrm{z})$, and $(\mathrm{z}) \leftarrow(\mathrm{t})$.
RUP	Roll up. Move the values in the stack thus: $(\mathrm{x}) \leftarrow(\mathrm{t}),(\mathrm{t}) \leftarrow(\mathrm{z}),(\mathrm{z}) \leftarrow(\mathrm{y})$, and $(\mathrm{y}) \leftarrow(\mathrm{x})$.
ENTR	$(\mathrm{x}) \leftarrow$ new_value.
CLST	Clear the stack.
STO	variable $\leftarrow(\mathrm{x})$.
RCL	$(\mathrm{x}) \leftarrow$ variable.
CLX	$(\mathrm{x}) \leftarrow 0$.
LSTX	$(\mathrm{x}) \leftarrow(\mathrm{xl})$
XLEY	Execute the following command if (x) \leq (y).
XGTY	Execute the following command if (x) > (y).

CALL - Invoke a SYNCH Subroutine
The CALL command is used to invoke a SYNCH subroutine.

m (IN) Number of times to execute the subroutine. If absent, execute the subroutine once.
name (CH) Name of the SYNCH subroutine to be executed.
A SYNCH subroutine is a set of commands that are grouped together by SUB and END commands. When invoked by a CALL command, the commands in the subroutine are executed sequentially. A SYNCH subroutine may be executed repeatedly within a SYNCH program.

A CALL statement may be included in another SYNCH subroutine. However, a subroutine may not call itself.

By including INCR statements in the subroutine, the subroutine will be executed repeatedly using different values of the incremented variables.

```
SEE ALSO: SUB
    END
    INCR
    MESH
    REPL
    VPAR
```


CYA - Beta Functions and Matrices of Cyclic Permutations of Elements

The CYA command computes the matrix products of the cyclic permutations of the matrices corresponding to the elements of a beamline, the associated betatron functions, and certain other properties of a synchrotron built utilizing the beamline as the superperiod. The table of betatron functions and other properties may be printed. The matrix products are available as named entities for subsequent use.

name $\quad(\mathrm{CH})$ Reference name. The names of the new matrices created by this command are derived from this name.
n (IN) Number of superperiods in the synchrotron. Optional.
bmln (CH) Name of a previously defined BML command.
The CYA command computes the k matrix products of the cyclic permutations of the matrices representing the k elements of the beamline bmln and the periodic betatron functions (the Twiss parameters) for the beamline. If the optional parameter m is specified, the beamline is used as the superperiod for a synchrotron built from m such superperiods and additional properties of the synchrotron are calculated.

A table of the betatron functions evaluated at the end of each element of the beamline is printed out. The other properties of the synchrotron are printed following the table of betatron functions. The horizontal and vertical chromaticities due to magnets which are explicitly included in the beamline are computed and printed.

The k matrices representing the cyclic permutations of the beamline elements are saved for future use. CYA uses the first letter of name and appends to it the integers $1, \ldots, k$ to create names for the k cycled matrices. For example, if the first letter of name is N, then the names of the resulting matrices are $N 1, N 2, \ldots, N k$. Permutation 1 is defined by the elements ordered as they are encountered by the beam.

The table of betatron functions is labelled from 0 (start of beamline) to k (end of beamline). The k lines 0 to $k-1$ correspond to the matrices numbered 1 to k and line k again corresponds to matrix 1.

The CYA command creates the new named matrices without warning. The user is cautioned not to define other elements whose names duplicate those created by CYA for the cycled matrices.

CYA

An example will illustrate the use of the CYA command. If the following SYNCH statements are used,

then four cycled matrices are

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{DCBA} \\
\mathrm{~T} 2 & =\mathrm{ADCB} \\
\mathrm{~T} 3 & =\mathrm{BADC} \\
\mathrm{~T} 4 & =\mathrm{CBAD}
\end{aligned}
$$

The matrix TST could also be referred to in a later SYNCH statement, TST being equivalent to T1.

CYAE - Beam Envelope Calculation

The CYAE command calculates the periodic betatron functions of the beamline and, using specified emittances, calculates the beam envelope through the beamline.

Given a beamline bmln together with beam emittances ϵ_{x} and ϵ_{y} and momentum error $\delta p / p$ specified by a previous BVAL or CYEM statement, CYAE uses the periodic betatron functions for the beamline and the specified emittances to calculate the beam envelopes through the beamline.

The parameter efact is the ratio of the emittance, ϵ, to be used by the CYAE command to the emittance obtained from the BVAL statement, $\epsilon_{0}=\sigma^{2} / \beta$. This allows, for example, a 1σ emittance to be used by BVAL while the beam envelopes are based on a $6 \sigma(95 \%)$ emittance. The displacements due to the betatron motion and to the momentum deviation are thus multiplied by $\sqrt{\text { efact. }}$

The "closed orbit equivalent emittances" are emittance-like parameters used to describe an ensemble of machines with closed orbit errors (cf., BVAL). The orbit distortions arising from placement errors vary as $\sqrt{\beta}$ and may be combined with the betatron displacements to estimate the total beam displacement from the design orbit.

```
SEE ALSO: BVAL
    TRKE
```


CYC - Periodic Beta Functions Through a Lattice Period

The CYC command computes the periodic betatron functions for a beamline. The beamline may be used as the superperiod in a synchrotron built from n such superperiods. A table of the betatron functions evaluated at the end of each element is printed out. Some other properties of the synchrotron are printed following the table. The horizontal and vertical chromaticities due to magnets which are explicitly included in the beamline are computed and printed.

name (CH) Reference name.
m (IN) Output selector. Values of the betatron functions are printed at the downstream end of each element selected by the value of m.
$\mathrm{m}<0$, Print values only at those elements whose names begin with a special character (default is \#). The PCYC command is used to specify an alternative special character or set of characters.
$0 \leq|\mathrm{m}| \leq 10$, or $\mathrm{m}=11,13,15$: Print orbit functions at the downstream end of each beamline element (or those which have the names selected by negative m, see above). $m=12,14,16$: Print only a summary of the global characteristics of the orbit.
$|\mathrm{m}|=11,12$: Generate an external binary file JBIS $=15$, which contains information about parameters and orbit functions for each element, and may be useful for external programs.
$|\mathrm{m}|=13,14:$ Generate an external BCD file $\mathrm{CYBO}=20$, which contains the dispersion functions.
$|\mathrm{m}|=15,16:$ Generate an external binary file FIL11 $=11$, which contains element parameters and vertical orbit functions, to be used by the program DEPOL ${ }^{[13]}$ for calculating the strengths of depolarizing resonances. To implement this feature, one must execute the command "OPEN FIL11" before the CYC. (Note that FXPT also can write FIL11).
(IN) Optional. Number of superperiods in the synchrotron. The beamline bmln is used to define the superperiod.
<0, The specified beamline is defined to be one half of a reflection-symmetric superperiod. The total number of superperiods in the synchrotron is $|\mathrm{n}|$. The betatron functions will be printed only for one unit of the beamline.
≥ 0 or blank, The beamline defines a superperiod. The table of functions is printed only for one superperiod. Setting $n=0$ or blank is equivalent to $n=1$.
bmln $\quad(\mathrm{CH})$ Name of $\mathbf{B M L}$ statement which describes the beamline.
ampl (CH) If keyword AMPL is given, calculate the amplitude (emittance) dependence of the tunes.
sx1, sx2 (CH) Optional. Names of previously defined sextupole families. If used, the beamline must contain the two families of sextupoles sx1 and sx2, to be adjusted to produce the desired chromaticities.
cx, cy (FP) Optional. Desired horizontal and vertical chromaticities.
hdr (CH) Optional. Name of a REM, PAGE, or RUN command. Forces the comment entered in these statements to be printed as a page header on each page of the table, and, if their m-value is 1 , then the date and time are appended to the header.

The CYC command calculates k matrices representing the cyclic products of the elements $B_{1}, B_{2}, \ldots, B_{k}$ which comprise the beamline; only the product $B_{k} * \ldots * B_{2} * B_{1}$ is saved and may be referenced by name. (Compare CYA.) Using the cyclic-product matrices, the betatron functions β, α and $\Sigma \psi / 2 \pi(\Sigma \psi \text { is the cumulative phase advance })^{*}$, the dispersion function η, and the cumulative path length s are computed at the end of each element and printed out, followed by a list of the tunes of the entire synchrotron, the machine radius, the total bend angle of the machine, and the transition gamma. The betatron functions and dispersion have horizontal and vertical components. The dispersion in addition has a longitudinal component. If the CYC command is preceded by an BVAL command with the proper option, a time component is calculated. The horizontal and vertical chromaticities of the machine due to magnets which are explicitly used in the $\mathbf{B M L}$ statement are calculated and printed. If none of $B_{1}, B_{2}, \ldots, B_{k}$ are MAG's, then no chromaticities will be computed.

The CYC command provides an option to adjust the chromaticity of the accelerator by varying the strengths of two families of sextupoles, sx1 and sx2. The beamline bmln may contain more than two families of sextupoles, but only the two specified are adjusted to set the chromaticities.

SEE ALSO: BEST, OPEN, PCYC, SXTP, BVAL

[^2]CYEM - Beam Emittance Calculation
CYEM calculates the horizontal and vertical electron integrals, rf output, and emittance factors for a storage ring.

name (CH) Reference name.
$\mathrm{n} \quad(\mathrm{IN})$ Number of superperiods. If n is negative, bmln is the first half of a reflected superperiod.
bmln (CH) Name of the beamline BML statement that defines the storage ring.
ptcl (CH) Type of particle
= ELEC or blank, Electron.
$=$ PROT, Proton.
energy (FP) Particle beam energy (GeV).
radius (FP) Machine radius (meters).
freq (FP) Rf frequency (MHz).
volt (FP) Rf voltage (MV/turn).
kappa (FP) Coupling coefficient $\sqrt{\epsilon_{y} / \epsilon_{x}}$.
The physics of electron synchrotrons is discussed in Sands. ${ }^{[14]}$

DEACT - Deactivate Statement(s)

The DEACT command deactivates a specified list of SYNCH statements.

```
----+-----1----+-----2----+-----3----+-----4-----+-----5----+-----6----+-------------------
    DEACT m stm1 stm2 stm3 ... stmm
----+----1----+----2----+----3----+----4----++----5----+----6----+--------------------
```

m
(IN) Number of statements to deactivate.
$=0$ or blank, Deactivate the command statements specified in the data fields. The number of statements deactivated is determined from the list. The list may be continued on successive lines.
>0, Deactivate m consecutive statements beginning with stm1. Only the one statement, stm1, should be named in the data field.
stm1, ... (CH) Name(s) of statement(s) to be deactivated.
DEACT suspends execution of a specified set of SYNCH commands.
The principal use of the DEACT and ACT commands is to disable or enable calculation of matrices of elements included in SYNCH subroutines, to choose between different TRKB statements, etc.

SEE ALSO: Section 6.5, Initially Deactivated Statements ACT

DEQ - Transformations Defined by Differential Equation Integration

The DEQk commands allow the use of built-in or user-written FORTRAN subroutines that specify particle coordinate transformations for each integration step of a differential equation. Integration over a finite interval constitutes a special beamline element.

name $\quad(\mathrm{CH})$ Reference name of the element defined by the DEQk command.
$\mathrm{k} \quad(I N)$ Identifies the internal FORTRAN subroutine DEQK that specifies the transformation of the particle coordinate vector. Values $\mathrm{k}=0-9$ are reserved for built-in routines, and values $\mathrm{k}=10-19$ are available for user-written routines.
m (IN) Number of parameters defined by the DEQk command.
p1, ... (FP) Input parameter values to be passed to the internal FORTRAN subroutine DEQK, and the length of the interval p1, and the step size p6, to be passed to the differential equation routine.

A DEQ element may be invoked by the commands TRK, FXPT, and TRKM. The element name operates on the particle state vector $V=\left(x, x^{\prime}, y, y^{\prime},-d s, d p / p, 1\right)$ by means of a differential equation integrator in $\mathbf{S Y N C H}$. This integrator invokes the subroutine DEQK, which calculates the increments in V.

Chapter 7 contains, as an example, the coding of the built-in FORTRAN subroutine DEQ4. The built-in DEQ routines are the following:

DEQ1: Integration through a wiggler magnet.
DEQ3: Integration of transverse and longitudinal beam envelopes.
DEQ4: Integration of transverse beam envelopes, linearized envelopes and single particles in a beam with space charge. This command can be used with FXPT to find envelopes in a periodic quadrupole array.
DEQ5: Integration through a sextupole magnet.

SEE ALSO: Section 3.6, Non-linear Transformation Calculations Chapter 7, Non-linear Transformations
MAP, TRK, FXPT, TRKM

DRF - Drift Space Definition
The DRF command is used to define drift spaces in a lattice. The command implements three different ways to define the drift spaces.

METHOD 1 - Define a single drift length and calculate its transfer matrix.

name (CH) Reference name.
length (FP) Length of the drift space.
This simplest use of DRF defines a single drift region of length length identified by name.
METHOD 2 - Define a series of drifts and the associated transfer matrices.

name (CH) Reference name
m (IN) Number of drift spaces to define.
vector (CH) Name of a vector with at least m components, defined by a VEC command. The values of the vector components are the lengths of the drift spaces.

This use of DRF defines a series of m drifts. The names of the drifts are constructed by appending to the first letter of name the digits $1,2, \ldots, \mathrm{~m}$.

DRF

Example: The statements

are equivalent to

METHOD 3 - Define the length of a drift region so as to hold fixed the total length of a series of elements (drifts and magnets).

name $\quad(\mathrm{CH})$ Reference name of drift space whose length is to be defined.
$\mathrm{n} \quad(\mathrm{IN})$ Number of drifts and/or magnets, not including name.
ldnam (FP) Initial length of the drift region name whose length is to be adjusted.
ltot (FP) Total length of the elements name, e1, e2, ..., en.
ei (CH) Names of drifts and/or magnets to be included in the total length. There can be up to eight ei names on the command line. If $n>8$, additional names can be continued on the next line, beginning in column 21. Embedded blank fields are not allowed.

This variant of the DRF command is used to adjust the length of the drift name so as to hold constant the total length of a set of drifts and/or magnets by varying the length of name to compensate for changes in the lengths of e1 ... en. Typically such changes are made by a fitting routine, and name as well as e1 ... en are included in a SYNCH subroutine. If ltot $\neq 0.0$, ldnam is adjusted to make

$$
l \mathrm{dnam}+l e_{1}+l e_{2}+l e_{3}+\ldots+l e_{n}=l \mathrm{tot}
$$

where $l e_{1}$ is the length of element e1. In this instance, ldnam may be left blank. If ltot $=0.0$ or blank in the statement definition, SYNCH calculates and stores its value from the formula

$$
\text { ltot }=l \mathrm{dnam}+l e_{1}+l e_{2}+l e_{3}+\ldots+l e_{n}
$$

where ldnam is the original value in the input statement.
When DRF is used in this fashion, with ltot $=0$, within a SYNCH subroutine, ltot will be determined on the first invocation of the subroutine. On subsequent invocations, ldnam will be adjusted to keep ltot constant.

ECHO - Print Out Input Statements
The ECHO command causes subsequent SYNCH input statements to be listed in the output file when they are read from the input file.

The ECHO command enables listing of the SYNCH input statements in the output file when they are read from the input file. The NECHO command is used to disable echoing. "ECHO" is the default mode.

SEE ALSO: NECHO

EMIS - End Misalignment Mode
The EMIS command switches the operation of SYNCH from the magnet misalignment mode to the normal mode.

```
----+----1----+-----2----+-----3----+----4-----+----5----+----6----+--------------------
    EMIS
```

SEE ALSO: BMIS
MAGS
Section 8.8, Magnet Misalignment Calculations

END - Mark End of SYNCH Subroutine
The END command marks the end of the definition of a SYNCH subroutine.

SEE ALSO: SUB
CALL

EQU - Alternate Name for Beamline Element
The EQU command creates an alias for another beamline element.

Subsequent references to name will have the same effect as references to elmn, with the following exception: if subsequently the input contains a new statement also called elmn, the alias name will continue to reference the original elmn.

FITB - Fit Betatron Functions

FITB invokes a two parameter fit to specified values of two betatron functions.

FITB iterates through subroutine sbr varying the parameters i1 and i2 of elements e1 and e2 to obtain desired values des1 and des2 of the betatron functions specified by m and n, respectively.

FITB

Example 1: Fit beta functions at ends of a standard FODO cell.

SBR	SUB							
QD	MAG		2.	gd		5000.		
QF	MAG		2.	gf		5000.		
B	MAG		28.	0 .		5000.	25.	\$
CELL	MMM		B	QD		B	QF	
	END							
C								
betx	$=$		99.					
bety	=		30.					
gd	=		-90.					
gf	=		90.					
	FITB	2	12 SBR	CELL gf	gd	1	1 betx	bety

This code iterates through subroutine $\mathbf{S B R}$ varying the values of gd and gf until the values of the horizontal and vertical beta functions associated with matrix CELL become 99.0 and 30.0, respectively. The computed values of gf and gd are subsequently available for use elsewhere in the SYNCH program.

Example 2: Fit the beta functions at the end of a standard FODO cell. This case is a variation on Example 1.

In this illustration, the values of parameter 2 of the magnets QF and QD are varied in exactly the same way as for Example 1. The distinction is that the values of the gradients are accessible only as parameters of the elements QF and QD.

SEE ALSO: FITQ

FITQ - Fit Betatron Tunes

FITQ invokes a two parameter fit to specified values of the horizontal and vertical tunes of a beamline.

name (CH) Reference name.
n (IN) Fit one or two variables.
<0, Fit single variable (e1, i1) to single desired value des1.
≥ 0 or blank, Fit both tunes to the desired values.
sbr (CH) Name of SYNCH subroutine containing mtrx.
mtrx (CH) Matrix from which to extract phase advances.
e1, e2 (CH) Elements containing parameters to be varied.
i1, i2 (IN) Parameters of e1 and e2 to be varied.
des1, des2 (FP) Desired values of tunes (phase advances $/ 2 \pi$)
del (FP) (Default value: 1.0E-6) Fit tolerance. Inverse weight. The fit is successful when \mid val - des $\mid<$ del.

FITQ iterates through subroutine sbr varying parameters i1 and i2 of elements e1 and e2 respectively to obtain the desired values des1 and des2 of the horizontal and vertical tunes (= phase advances $/ 2 \pi$) through the elements composing mtrx.

FITQ obtains the tunes from the matrix mtrx representing the beamline. Only the fractional part of the tune can be determined from mtrx and the solution that is found by FITQ may correspond to tunes whose integer part is not what is desired.

FITQ

Example: Vary the strengths of two quadrupoles in the cell represented by the beamline . C to obtain tune values equal to 0.4.

The computed values of the quadrupole strengths gf and gd replace their initial values and are available for use in subsequent statements.

SEE ALSO: FITB

FITR - Fit matrix elements

FITR invokes a two parameter fit to specified values of two of the matrix elements of a transfer matrix.

name (CH) Reference name.
$\mathrm{m} \quad(\mathrm{IN})=\mathrm{ij}$, indicating that the ij -th element of the 7×7 matrix is to be fitted.
$\mathrm{n} \quad(\mathrm{IN})=\mathrm{kl}$, indicating that the kl -th element of the 7×7 matrix is to be fitted.
sbr (CH) SYNCH subroutine containing mtrx.
mtrx $\quad(\mathrm{CH})$ Name of matrix whose matrix elements are to be fitted.
e1, e2 (CH) Elements containing parameters to be varied.
i1, i2 (IN) Parameters of e1 and e2, respectively, which are to be varied.
des1, des2 (FP) Desired values to which to fit the matrix elements of mtrx.
del (FP) (Default value: 1.0E-6) Fit tolerance. Inverse weight. The fit is successful when \mid val - des $\mid<\mathrm{del}$.

FITR iterates through subroutine sbr varying parameters i1 and i2 of elements e1 and e2 respectively to obtain the desired values des1 and des2 of the matrix elements of mtrx specified by m and n.

FITV - Vary Two Parameters to Fit Values of Beam Coordinates

The FITV command invokes a two-parameter fit so that two of the components of a particle state vector achieve specified values at the end of the beamline.

The FITV command iteratively invokes a subroutine to track a particle through a beamline and adjusts two parameters of the elements which comprise the beamline to obtain specified values for two components of the particle's phase space vector at the end of the beamline. The initial phase space vector of the particle must be defined before FITV is invoked.

FITV

In the example, VI and VF are the state vectors of the particle at the beginning and end of the beamline. The FITV command iteratively invokes subroutine SBR to track VI through the beamline and varies two parameters until the desired values of the components of VF are obtained.

Example:

In this example, the field strengths, bk1 and bk2, of the kicks K1 and K2 are adjusted to make the 3rd and 4th components of VF equal to the desired values des1 and des2.

FXPT - Closed Orbit Calculation

NOTE: The second record must be included with the FXPT command even if all the fields are blank.
name (CH) Reference name.
m (IN) Select output printed by FXPT.
<0, Print data at only those locations whose names begin with a special character (default is \#). The PCYC command is used to specify an alternative special character. $=0$, Print the matrix representing the beamline, its eigenvalues, the closed orbit and the dispersion vector at location 0 .
$=1$, As for option 0, plus the eigenvectors at position 0 .
$=2$, As for option 1, plus the closed orbit traced through the beamline bmln.
$=3$, As for option 1, plus the eigenvectors traced through the beamline bmln.
$=4$, Combine options 2 and 3 .
$\mathrm{n} \quad$ (IN) Number of superperiods in the ring.
>0, Number of superperiods.
<0, The reflection of bmln is added to bmln to form the complete superperiod. The number of superperiods is $|\mathrm{n}|$.
psv (CH) Name of the PVEC statement defining the initial guess for the closed orbit coordinates.
bmln (CH) Name of the BML statement which defines the beamline for which the closed orbit is requested.
nscl (IN, default=1) Number of superperiods to close the orbit. May be greater than the number of superperiods in the ring to find a non-linear fixed point.
isav (IN) Save option for parameter psv.
$=0$ or blank, The vector specified by psv is not updated by FXPT.
$=1$, The equilibrium orbit found by FXPT replaces the initial value of psv.

FXPT
itr
(IN) Number of iterations to find closed orbit (default=25).
iflg (IN) Ray trace option (see below). Specifies the number of rays to be traced through the beamline.
$=0$ or blank, Trace only the closed orbit ray.
$=1$, Trace the closed orbit ray plus 9 neighboring rays.
$=2$, Trace the closed orbit ray, 9 neighboring rays and 4 rays for the linearized equations.
$=3$, Trace the closed orbit ray, 9 neighboring rays and 4 rays for the linearized equations, first for the beam envelope and second for four rays inside the beam envelope. This feature is used for integrating beam envelopes under the influence of space charge, using DEQ4.
itap (IN) Switch to dispose data used by ORBC for orbit correction.
$=0$ or blank, Do not save the data.
$=1$, Save the data on file ORB1 $=24$.
$=2$, Same as itap $=1$, but calculate new corrections to be added to previous ones.
e1, e2 (FP) Closure tolerances for closed-orbit displacements and slopes.
d1, d2 (FP) Displacements from reference ray of neighboring rays, for finding $M 4$. ($M 4$ is a linearized representation of the beamline. See discussion below.)
d3 (FP) displacement in $d p / p$ used to calculate the linearized 3×3 matrices.
Given a beamline bmln which may contain non-linear elements, the FXPT command calculates and prints the positions through bmln of the closed orbit for particles with momentum error $d p / p$. The beamline may be made up of any linear transformations, SXTP, NPOL, and MOVE elements and user defined MAP or DEQ elements. The second line of the FXPT statement may be left blank if no MAP or DEQ statements are encountered in the beamline.

Each non-linear element is linearized in a neighborhood of the closed orbit and the betatron functions of the resulting linear system are calculated and printed. A by-product of the closed orbit calculations is a 4×4 matrix, $M 4$, representing the beamline. $M 4$ acts on column vectors of the form $\left\{X-X e, X^{\prime}-X^{\prime} e, Y-Y e, Y^{\prime}-Y^{\prime} e\right\}$, where $\left\{X e, X^{\prime} e, Y e, Y^{\prime} e\right\}$ is the closed orbit. This matrix as well as its eigenvalues and eigenvectors are printed.

As a first guess for the closed orbit, one starts with the particle state vector psv (defined by a PVEC statement) which contains $d p / p$ as its 6 -th element. The particle is tracked through bmln and recalculated until after i iterations

$$
\begin{array}{cc}
\left|X_{i}-X_{i-1}\right|<e 1, & \left|X_{i}^{\prime}-X_{i-1}^{\prime}\right|<e 2 \\
\left|Y_{i}-Y_{i-1}\right|<e 1, & \left|Y_{i}^{\prime}-Y_{i-1}^{\prime}\right|<e 2
\end{array}
$$

or until the maximum number of iterations, itr, is reached (default: itr=25). The ray starting from ($X_{i}, X_{i}^{\prime}, Y_{i}, Y_{i}^{\prime}$) defines the closed orbit.

FXPT assumes that horizontal-vertical coupling may be present. Coupling is automatically present whenever the orbit contains vertical displacements together with nonlinearities, or vertical or tilted deflecting magnets, tilted quadrupoles, or solenoids. Beta functions and phases for the normal modes are computed using the formalism of Edwards and Teng ${ }^{[10]}$ as well as the coupling angle, the angle between the normal-mode axes and the horizontal and vertical axes. The theory is described in Section 8.9.

FXPT also can generate the binary file FIL11 = 11, containing element parameters and vertical orbit functions, to be used by the program DEPOL ${ }^{[13]}$ for calculating the strengths of depolarizing resonances. To implement this feature, one must execute the command "OPEN FIL11" before the FXPT command.

SEE ALSO: PVEC

IBET - Enter Initial Values of Betatron Functions

The IBET command provides one method to enter the initial values of the betatron functions which are needed by TRKB, TRKE or TRKM commands.

INCR - Increment an Input Parameter
The INCR command causes one parameter of a specified command to be incremented by a designated amount.

name $\quad(\mathrm{CH})$ Name of $\mathbf{I N C R}$ statement.
m (IN) Number of the parameter to be varied.
n (IN) Increment mode switch. Parameters can be incremented either additively (the default) or multiplicatively.
$=0$ or blank, The parameter is altered by adding step to the current value of the parameter.
$\neq 0$, The parameter is altered by multiplying the current value by step.
stmt (CH) Name of the SYNCH statement containing the parameter to be altered.
type $\quad(\mathrm{CH})$ Type of parameter to be altered.
$=\mathrm{F}$ (default) Floating point number.
$=\mathrm{I}$ Integer.
$=K A$ Integer, corresponding to parameter m .
$=\mathrm{KB}$ Integer, corresponding to parameter n .
step (As appropriate) Value used to alter the selected parameter. The type of step must agree with that of the parameter being altered. The value may be positive or negative.

The INCR command increments or multiplies the m-th parameter of type type in stmt by step. The INCR command is often used by placing it within a SYNCH subroutine, which is subsequently invoked repetitively by a CALL command. Upon completion of the CALL command the incremented variable is restored to its original value. Note that a matrix depending on the incremented variable is modified only when the defining command is re-executed.

INCR

Example:

Here, the second parameter (the gradient) of the MAG statement QD has initially the value - 50.0 and is incremented by -.05 on each of ten invocations of XMPL. After the INCR statement is executed, reference to parameter 2 of the MAG statement would use the properly incremented value. However, the matrix corresponding to QD is not updated until the MAG statement is executed on the next iteration.

SEE ALSO: MESH
 REPL
 VPAR

INV - Invert a Matrix
The INV command computes the inverse of a matrix.

The matrix name is defined to be the inverse of the matrix mtrx.
SEE ALSO: Section 6.2, Symbolic Entry for Inverse of a Matrix

INV2 - Rotate a Beamline 180° and Reflect It

The INV2 command produces the matrix representing a beamline rotated through 180° about the longitudinal axis and reflected.

name $\quad(\mathrm{CH})$ Reference name of the rotated-reflected matrix.
mtrx $\quad(\mathrm{CH})$ Name of the matrix to be rotated and reflected.
The INV2 command rotates mtrx through 180° about the longitudinal axis and mirror-reflects the result.

Example:

The INV2 command is equivalent to a ROT command followed by a REF command. Thus, if

then

is equivalent to

IOUT - Write a compressed lattice file

The IOUT statement writes a new SYNCH input file containing current definitions and values. Action commands and comments are omitted from the file.

m
(IN) Controls statements to be written to the file.
$=0$ or blank (default), Write parameters, beam elements and beamlines. The original BML definitions are preserved.
$=1$, Like $\mathrm{m}=0$, but omit MMM, REF, and BML statements. The resulting file contains only the parameter and element definitions.
$=2$, Like $\mathrm{m}=0$ with the beam lines expanded, except that parentheses, indicating repeated structures, are retained. This can be a long file.
$=3$, Like $\mathrm{m}=2$, but beamlines BMLs are completely expanded into a flat file. This file is often very long.
n (IN) Controls the definition of a reflected beam line.
$=0$ or blank, Replace a REF statement with a BML statement with $\mathrm{n}=-1$.
$=1$, Retain command REF as it was defined.
The IOUT command extracts from the input data stream the commands $=$, PARA, CALC, DRF, MAG, MAGS, MAGV, MMM, NPOL, REF, SXTP, and BML current at the time the IOUT command is invoked. The output is written to file LFIL $=70$.

The CALC command is always translated into a PARA command. The $=$ command is translated into a PARA unless its value is 0 or a Symbolic Floating Point datum.

Like commands are grouped together and alphabetized by name.
Record 1 of LFIL contains the text 'setops synch' in columns 1-13. This line is required as part of the input to the $\mathbf{S Y N C H}$-to-MAD translator incorporated in versions 6 and 7 of the MAD ${ }^{[11]}$ program. This translator does not translate irregular edge angles (fifth and sixth parameters of the MAG statements) if these are different from blank, 0 , or $\$$. Subsequent lines contain the RUN command from the input data set and the commands listed above, ending with the BMLs.

The output file, LFIL, provides a handy listing of parameter values and beam line elements for reference or checking. It can be used, as it stands, for input to the translator. It can be used as SYNCH input by removing the first line, appending SYNCH action commands, e.g. SOLV, CYC, and a STOP statement.

KEEP - Save selected files

Force selected files to be saved at job completion for further use.

fli (CH) Name(s) of the file(s) which are to be saved at completion of job.
A number of files written by SYNCH are normally deleted at completion of the job. Using the KEEP command, one can force such files to be retained for subsequent use. The files which may be saved by use of KEEP are: SVOUT (logical unit 4) and ORB1 (logical unit 24).

SEE ALSO: Appendix A, Files
FXPT
SOLV

KICK - Dipole Kicker Magnet or Field Error Definition

name (CH) Reference name.
m (IN) Define direction of dipole field.
$=1$, Field is in x-direction; deflection, vertical.
$=2$ or blank, Field is in y-direction; deflection, horizontal.
n (IN) Kick strength option.
$=0$ or blank, Field strength given by bk.
≥ 1, Field strength is random within range \pm bk.
elmn (CH) Element name into which the kick or error is to be inserted.
= blank, A zero-length drift is assumed and the strength is defined by $\mathrm{bk}=($ kicker length $) *($ field strength $)$. The effect is to provide a delta function kick which changes only the direction of the particle's trajectory.
$=$ name of DRF of length ℓ. KICK returns the matrix for a zero-gradient dipole magnet of length ℓ and field strength bk .
$=$ name of MAG of length ℓ. KICK adds a delta function kick of field strength bk (deflection angle $\ell * \mathrm{bk} / b \rho$) at the center of the magnet.
brho (FP) Magnetic rigidity.
bk (FP) Strength of the kick or error field.
The KICK command creates the matrix representing either a dipole kick or a magnet having a dipole field error.

If elmn is blank or is that of a zero-length drift a matrix representing a delta function kick is created. The net effect of this matrix is to change only the direction of the particle's trajectory.

If elmn refers to a drift of nonzero length, KICK produces the matrix of a dipole magnet having the same length as elmn.

If elmn refers to a magnet, KICK produces the matrix of the magnet with a dipole field error.

LIST - Define List of Elements

The LIST statement defines a list of elements which will replace successive instances of a named element in a beamline.

rpnm (CH) Name of the lattice element to be replaced, on successive occurrences in the beamline, by the listed elements.
el $i \quad(\mathrm{CH})$ Name of the specific elements which are to be substituted.
The LIST command defines a list of elements ell, $, \ldots, \mathrm{el} k$ which will replace successive instances of the element rpnm in a beamline.

The LIST command is useful when studying the effects of magnet errors and misalignments on particle orbits in a beamline, including the closed orbits in a circular machine. A beamline is normally defined to consist of ideal, perfectly aligned elements. To study the orbit distortions caused by magnet imperfections and misalignments, modified elements which incorporate the errors can be defined using, for example, the KICK, MAGS and/or MOVE commands. Then, when named in a LIST command, these modified elements can replace the ideal elements which define the beamline.

LIST

Example:

QF	MAG	L	K		1.						
QD	MAG	L	-K		1.						
QF1	MOVE	QF			x1		xp1		y1		yp1
QF2	MOVE	QF			x2		xp2		y2		yp2
-	.	.	-		.		.		.		-
-	-	-	-		-		.		-		.
.
QF25	MOVE	QF			x25		xp25		y25		yp25
QD1	MOVE	QD			x26		xp26		dy 26		yp26
-	-	-
.	.	-	-		.		-		-		-
.	.	-
QD25	MOVE	QD			x50		xp50		y50		yp50
C											
. C	BML	QFL . ${ }^{\text {B }}$	QDL	. B							
. SP	BML	25(. C)	. SS							
QFL	LIST	QF1 QF2	QF3	QF4	QF5	QF6	QF7	QF8	QF9	QF10	
		QF11		QF25							
QDL	LIST	QD1 QD2	QD3	QD4	QD5	QD6	QD7	QD8	QD9	QD10	
		QD11		QD25							

C

In this example, the beamline .SP is made up of 25 standard cells and a long straight section. When the FXPT command is invoked, the beamline will use elements QF1, .. and QD1, . . from the LIST commands in place of the elements QFL and QDL when calculating the closed orbit.

MAG - Magnet Definition
The MAG statement defines the transfer matrix of a dipole, quadrupole, or combined function magnet, or of several magnets of the same type.

name (CH) Reference name.
m (IN) Number of magnets to define.
$=0,1$, or blank, Define one magnet using parameters specified.
>1, The number of similar magnets to define using parameters specified in VEC statements.
n (IN) Select definition of vertical part of magnet matrix.
$=0$ or blank, Normal magnet definition.
$\neq 0$, A fictitious element for which the vertical part of the magnet matrix is replaced by the horizontal part.
length (FP) Effective length of the magnet, ℓ.
gradient (FP) Field gradient, B^{\prime}.
brho (FP) Magnetic rigidity of the particle beam, $B \rho$.
b0 (FP) Reference bend field, B. For quadrupoles, set $b 0=0$ or blank.
e1, e2 (FP) Angles in degrees between the entering and exiting central rays and the normal directions to the entrance and exit faces of the magnet. The angle is positive when the central ray is between the normal direction and the bend center of the magnet.
$=0$, or blank, The central ray enters and/or exits the magnet perpendicular to the magnet face(s).
$=\$$ (left justified), If the $\$$ character is present, the magnet is assumed to be a parallelfaced rectangular bending magnet which bends the beam by θ. Then e $1=\mathrm{e} 2=\theta / 2$.

The MAG command calculates the transfer matrix for a magnet of the specified length, gradient, magnetic rigidity brho, reference bend field b0, and entrance and exit angles e1 and e2. The gradient, $B^{\prime}=d B_{y} / d x$, is evaluated at the reference orbit.

MAG

The gradient, magnetic rigidity and reference bend field may be scaled by an arbitrary factor leading to equivalent definitions of a magnet. The choice is dictated by convenience. Three particularly convenient choices which emphasize the geometric nature of the problem are illustrated.

1. As multiples of brho:

$$
\begin{aligned}
& \text { gradient }=\left(B^{\prime} / B \rho\right)(B \rho)=K(B \rho) \leftarrow K=\mathrm{kk} \\
& \text { brho }=1.0(B \rho) \leftarrow 1.0 \\
& \text { b } 0=(B / B \rho)(B \rho)=(1 / \rho)(B \rho) \leftarrow(1 / \rho)=1 / \text { rho }
\end{aligned}
$$

Then

where rho is the radius of curvature of the particle trajectory in the reference bend field.
2. As multiples of brho/length:

The focal length, f, and quadrupole strength, q, of the equivalent thin lens quadrupole may be written

$$
(1 / f)=q=K \ell=B^{\prime} \ell / B \rho .
$$

Then,

$$
\begin{aligned}
& \text { gradient }=\left(B^{\prime} \ell / B \rho\right)(B \rho / \ell)=q(B \rho / \ell) \leftarrow q \\
& \text { brho }=\ell(B \rho / \ell) \leftarrow \ell \\
& \mathrm{b} 0=(B \ell / B \rho)(B \rho / \ell) \leftarrow(B \ell /(B \rho)=\theta
\end{aligned}
$$

where θ is the dipole bend angle. Then

Here, the length of the magnet is entered twice, but using the bend angle, θ, as an input parameter emphasizes the geometric nature of the problem and is often useful.
3. As multiples of bo:

$$
\begin{aligned}
& \text { gradient }=\left(B^{\prime} / B\right) B=k B \leftarrow k=\mathrm{k} \\
& \text { brho }=B \rho \leftarrow \rho=\text { rho } \\
& \text { b0 } \leftarrow \omega \text { (relative horizontal curvature) } \\
& \omega=0 \text {, for a quadrupole } \\
& \omega=1,-1, \text { for dipole }
\end{aligned}
$$

where ω, the relative horizontal curvature, is defined by $\omega=$ curvature $\times \rho$. The sign of ω is defined so that ω is positive when the center of curvature of the bend lies in the negative x direction. Then,

where omega is the value of ω.

Multiple magnets defined by one command line.

A series of lengths and/or gradients may be defined as the elements of vectors using the VEC command. The vectors can then be used to define several magnets with a single MAG statement (cf., DRF). The procedure is illustrated schematically as

The magnet names are constructed by appending to the first letter of name the digits $1,2, \ldots$ The length of any vector used in this way must at least be equal to the number of requested magnets.

Several examples will illustrate this method.

MAG

(a) The following statement

is equivalent to

g1	MAG	q1	gf	brho
g2	MAG	q1	gd	brho.

(b) The following statement

is equivalent to

(c) The following statement

is equivalent to

SEE ALSO: MAGV

MAGS - Magnet definition with errors
The MAGS command defines the transfer matrix representing a previously defined magnet with the effects of dipole field errors and/or misalignments added.

name $\quad(\mathrm{CH})$ Name of the newly defined magnet which includes the effects of the errors.
m (IN) Selector to determine the interpretation of db .
$=1$ or blank, $\mathrm{db}=d B / B$ and the MAG statement defining mg must have the scaling

$$
\begin{array}{lllll}
\mathrm{mg} & \text { MAG } & \text { length } & \mathrm{k} & \text { rho }
\end{array}
$$

$=2, \mathrm{db}=d B$ and the MAG statement must have the scaling

```
mg MAG length gradient brho bo
```

n (IN) Randomizing switch.
<1 or blank, The errors are assigned the values kxin, kxout, kyin, kyout, and db.
≥ 1, The errors are assigned random values in the ranges $[0$, kxin $),[0$, kxout), $[0$, kyin $),[0$, kyout $)$, and $[0, \mathrm{db})$.
mg (CH) Previously defined magnet (MAG command).
kxin (FP) Radial displacement of magnet axis at magnet entrance.
kxout (FP) Radial displacement of magnet axis at magnet exit.
kyin (FP) Vertical displacement of magnet axis at magnet entrance.
kyout (FP) Vertical displacement of magnet axis at magnet exit.
$\mathrm{db} \quad(F P)$ Field strength error. Interpretation controlled by parameter m, above.
Given the previously defined magnet mg, the transfer matrix for a new magnet, name, is calculated. Magnet name has the same magnet properties as mg, modified to account for the field error $\mathrm{db}(d B / B$ or $d B)$ and misalignments.

MAGS

The MAGS command is used in conjuction with the BMIS and EMIS statements. The resulting closed orbit is found using a CYC command, in the columns containing the x, y dispersions and their slopes.

Alternate method: A more general approach, which also includes coupling effects, is to use the MOVE and FXPT commands.

SEE ALSO: BMIS, EMIS, CYC
 MOVE, FXPT

Section 8.8, Magnet Misalignment Calculations

MAGV - Vertical Bending Magnet Definition

The MAGV command defines the transfer matrix for a vertically bending magnet.

The parameter specifications for the MAGV command are identical to those for the MAG command, to which the user is referred for details.

The matrix created by the MAGV command is identical to that produced by the following sequence of commands

R+	ROTZ	90.0		
R-	ROTZ	-90.0		
B1	MAG	length	gradient brho	b0
B1V	MMM	R+ B1	R-	

SEE ALSO: MAG

MAP - Non-linear Transformation Definition

The MAPk commands allow use of built-in or user-written FORTRAN subroutines that specify particle coordinate transformations corresponding to special (usually nonlinear) beamline elements.

name $\quad(\mathrm{CH})$ Reference name of the element defined by the MAPk command.
$\mathrm{k} \quad(\mathrm{IN})$ Identifies the internal FORTRAN subroutine MAPk that specifies the transformation of the particle coordinate vector. Values $\mathrm{k}=0-9$ are reserved for built-in routines, and values $\mathrm{k}=10-19$ are available for user-written routines.
m (IN) Number of parameters defined by the MAPk command.
p1, ... (FP) The input parameter values. They are passed to the internal FORTRAN subroutine MAPk.

The element name operates on the particle state vector $V=\left(x, x^{\prime}, y, y^{\prime},-d s, d p / p, 1\right)$ by means of the internal FORTRAN subroutine MAPk. It is included in a BML statement and invoked by a TRK, FXPT, or TRKM statement.

The use of the MAPk commands is explained further in Section 3.6. Chapter 7 contains an example with the FORTRAN subroutine MAP0, a quadratic mapping. SYNCH includes two built-in routines: MAP0 and MAP3, which simulates the beam-beam force of a round beam.

SEE ALSO: Section 3.6, Non-linear Transformation Calculations
Chapter 7, Non-linear Transformations
DEQ, TRK, FXPT, TRKM

MAT - General Matrix Definition

The MAT command is used to define an arbitrary matrix.

name (CH) Reference name of the matrix.
m (IN) Row dimension of matrix.
n (IN) Column dimension of matrix.
Aij (FP) The $i j$-th element of the matrix. Each column of the matrix must begin on a new line.

The MAT command is used to define an arbitrary m-row by n-column matrix. The matrix elements are read in sequentially by columns. Note that each column must start on a new line.

MAT3 - Define Transfer Matrix

The MAT3 command defines a transfer matrix in terms of the 3×3 submatrices describing uncoupled motion.

name $\quad(\mathrm{CH})$ Reference name of the matrix which is created.
rx11, ... (FP) Components of the 3×3 horizontal transfer matrix. The third row of the matrix is (001).
ry11, ... (FP) Components of the 3×3 vertical transfer matrix. The third row of the matrix is (001).

MESH - Loop Through SYNCH Subroutine Variables
The MESH command is used to repeatedly invoke a SYNCH subroutine while incrementing a specified set of defining variables.

$m \quad$ (IN) Number of variables to be varied.
$\operatorname{sbr} \quad(\mathrm{CH})$ Name of subroutine containing elements a_{i}.
$\mathrm{k} i \quad(\mathrm{IN})$ Position of floating point variable in defining statement of element a_{i}.
$\mathrm{a} i \quad(\mathrm{CH})$ Name of element containing the variable.
$\min i \quad(\mathrm{FP})$ Minimum value of variable k_{i} of element a_{i}.
$\max i \quad(\mathrm{FP})$ Maximum value of variable k_{i} of element a_{i}.
inci (FP) Increment of the variable k_{i} of element a_{i}.
The MESH command simulates a nested FORTRAN Do-loop. The subroutine sbr is executed repeatedly while the control variables $k i$ of elements a i are incremented by inci. The first variable controls the outer loop; the m-th, the innermost loop.

MESH

Example:

This example will produce a CYC printout of the cell C for all of the combinations of the gradients of the magnets QF and QD from 0.5 to 1.0 for QF and -1.0 to -0.5 for QD.

SEE ALSO: INCR
VPAR

MMM - Matrix Multiplication
The MMM command multiplies together a series of matrices representing magnets, drifts, other beamline elements, or whole beamlines to create a single matrix representing the sequence.

name $\quad(\mathrm{CH})$ Reference name.
m (IN) Control variable. Number of matrices to be multiplied. The use of this variable is optional.
n (IN) Control variable.
$=0$ or blank, Create a matrix representing the beamline by multiplying the matrices of the given elements q1, ..., qm.
<0, A matrix corresponding to the reflection of the input beamline is appended to the input beamline. Thus only half of a symmetric superperiod need be specified.
$|\mathrm{n}|>1$, The resulting matrix is raised to the $|\mathrm{n}|$ th power.
q1, ... (CH) Names of previously defined elements (drifts, magnets, etc.) or beamlines.
For many purposes it is not necessary to step through a beamline element by element. Instead, a single matrix can be used to transport the particles through the beamline. The MMM command multiplies the matrices of $\mathrm{q} 1, \mathrm{q} 2, \ldots, \mathrm{qm}$ taken in beamline order, and stores the result M (name) $=$ $M(\mathrm{qm}) M(\mathrm{qm}-1) \ldots M(\mathrm{q} 1)$ in the matrix name. The names $\mathrm{q} 1, \ldots, \mathrm{qm}$ represent the constituents (drifts, magnets, other MMMs, or beamlines) which comprise the beamline.

MOVE - Perform an Element Misalignment

The MOVE command defines a new element as an existing element that has been misaligned by translations along and/or rotations about one or more of the x, y, and s axes. Coupling effects are included automatically.

Format 1-

name (CH) Reference name.
n (IN) Control variable to use specified or randomly generated misalignments. $=0$ or blank, Use misalignments specified by command line parameters.
$=1$, Values of the misalignment parameters are randomly generated in the ranges $[-h x / 2, h x / 2)$, etc. New values are generated on subsequent invocations of the MOVE command.
$=2$, For the first execution of the command, random values are generated as for $\mathrm{n}=1$. For subsequent invocations, as in a repeatedly executed subroutine, the same (random) values are used. That is, the random number seed is preserved and used to restart the random number generator each time, thus generating the same sequence of random numbers and the same displacements.
elem (CH) Name of the element to be misaligned.
ray (CH) (Optional) Name of a particle vector defined by a PVEC command. The ray is mapped by the MOVE command to illustrate the effects of the misalignment; it is used in tracking and closed orbit calculations by, e.g., the TRK,TRKB, and FXPT commands.
disp (CH) Name of a vector (defined by a previous VEC command) which specifies the misalignment parameters. The six component vector is ($h x, d h x, h y, d h y, h s, d h s$), where

$$
\begin{array}{ll}
h x & =\text { Translation distance along } x \text {-axis (meters). } \\
d h x & =\text { Rotation angle about } y \text {-axis (radians). } \\
h y & =\text { Translation distance along } y \text {-axis (meters). } \\
d h y & =\text { Rotation angle about } x \text {-axis (radians). } \\
h s & =\text { Translation distance along } s \text {-axis (meters). } \\
d h s & =\text { Rotation angle about } s \text {-axis (radians). }
\end{array}
$$

MOVE

Format 2-

All command parameter definitions are the same as those for Format 1 except that the disp field must be blank and the transverse displacements are specified on the command line. Format 2 cannot be used to specify longitudinal moves.

The MOVE command defines a new element, name, which represents the element elem when misaligned as specified by the vector disp. The misalignment vector disp must be defined by a VEC command.

When using the MOVE statement, closed orbit calculations are to be made using the FXPT command. The effects of coupling are included.

Alternate method: Element misalignments can also be studied using the BMIS-EMIS-MAGS commands; then the closed orbit calculations are done using a CYC command This method does not allow for coupling between the horizontal and vertical motion.

SEE ALSO: Section 8.8, Magnet Misalignment Calculations
 BMIS
 EMIS
 FXPT
 MAGS
 TRK

MXV - Matrix-Vector Multiplication

vf
(CH) Name of the 7-component product vector.
mtrx (CH) Name of a matrix.
vi (CH) Name of a particle vector defined by a PVEC or by another MXV command.
The MXV command transports the particle represented by vi through the beamline represented by mtrx, by multiplying the particle coordinate vector vi by mtrx. The particle's state vector after traversing the beamline is vf .

SEE ALSO: PVEC
 TRK

NECHO - Suppress Printing of Input Statements
The NECHO command disables echoing of SYNCH input commands to the output file.

SYNCH normally echoes commands in the input stream to the output stream. The NECHO command disables echoing. Echoing may be restored using the ECHO command.

SEE ALSO: ECHO

NPOL - Define N-pole Magnet
The NPOL command defines the particle-coordinate transformation through an N-pole magnet.

name $\quad(\mathrm{CH})$ Reference name of element created.
$m \quad(I N)$ Order of perturbation in Hamiltonian, defined as $m=N / 2$. The corresponding multipole order is $n=m-1$. Some examples are given in the table.

field	N	m	n
dipole	2	1	0
quadrupole	4	2	1
sextupole	6	3	2
octopole	8	4	3
decapole	10	5	4
\ldots			

k (IN) Select normal or skew field.
$=0$, Normal N-pole thin lens.
$=1$, Skew N-pole thin lens.
length (FP) Effective length of element.
coeff (FP) Taylor series expansion coefficient b_{n} of the median-plane field. The strength of the thin-lens kick is given by

$$
S= \begin{cases}\frac{\text { coeff }}{\text { brho }} & \text { length }=0 \\ \frac{\text { length } \times \text { coeff }}{\text { brho }} & \text { length } \neq 0\end{cases}
$$

brho (FP) Magnetic rigidity.
The NPOL command is used to define the particle-coordinate transformation through an N-pole magnet. The multipole field itself is represented by thin-lens approximation. If the element has non-zero length, the transformation is obtained by concatenating a drift, the thin-lens transformation, and another drift. Each drift is half the length of the element.

NPOL

The thin-lens multipole field is expressed as the term of appropriate order in the Taylor series expansion of the (median plane) field:

$$
B_{y}+i B_{x}=\left\{\begin{array}{l}
1 \\
i
\end{array}\right\} B_{n} \begin{cases}\text { normal; } & \mathrm{k}=0 \\
\text { skew } ; & \mathrm{k}=1\end{cases}
$$

where $B_{n}=\left[b_{n} / n!\right] z^{n}$ and $z=x+i y$. The N-pole thin-lens magnet changes the particle momenta according to:

$$
p_{z} \rightarrow p_{z}-(1+i)\left(B_{n} / B \rho\right),
$$

where

$$
p_{z}=p_{x}+i p_{y} .
$$

In general, NPOL is used to implement a nonlinear beamline element. For closed orbit and other calculations performed by FXPT, which map rays slightly displaced from the reference ray, the transformation is linearized and represented by the matrix:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-Q & 1 & -i Q & 0 \\
0 & 0 & 1 & 0 \\
-i Q & 0 & 0 & 1
\end{array}\right)
$$

where

$$
Q=\left\{\begin{array}{l}
1 \\
i
\end{array}\right\} \frac{b_{n}}{(n-1)!} z^{n-1} \begin{cases}\text { normal; } & k=0 \\
\text { skew; } & k=1\end{cases}
$$

SEE ALSO: SXTP

OPEN - Open special output files
The OPEN command opens files intended to receive output from particular commands and to be saved at completion of the job.

fn1, ... (CH) Names of the files to be opened.
It is sometimes convenient to write files required for input to another program. The OPEN command allows such files to be created only when needed.

The files controlled by OPEN are FIL11 (logical unit 11) and PLFIL (logical unit 17).

SEE ALSO: Appendix A, Files BEST
FXPT

ORBC - Calculate Closed Orbit Corrections

The ORBC command calculates optimized correction element strengths necessary to correct a given closed orbit in an accelerator with field errors.

m (IN) Select correction in horizontal or vertical plane.
$=0$, Horizontal corrections.
$=1$, Vertical corrections.
$\mathrm{n} \quad(\mathrm{IN})$ Iteration limit and print option selector. For any $\mathrm{n},|\mathrm{n}|$ is the maximum allowed number of iterations. <0, All intermediate results as well as the matrix relating the orbit displacements to the correction elements are printed.
>0, Only the results of the first and last iterations are printed. The matrix relating the orbit displacements to the correction elements is not printed.
fxpt (CH) Name of FXPT statement defining initial orbit. The FXPT statement used must have a 1 or 2 in column 55 to tell the program to write closed orbit information to the file ORB1 (logical unit 24).
mon (CH) Name of elements in beamline where displacements are to be measured. This name will occur at many points in the beamline.
cor (CH) Name of correction elements defined by KICK statements in the beamline. There must be many correctors, all with this name, distributed along the beamline.
deltax (FP) Tolerable range of final residual orbit errors, in meters. The correction is successful if all the residual orbit errors are in the range (- deltax $/ 2$, deltax/2) .
deltam (FP) Assumed measurement error, in millimeters. ORBC calculates the corrections assuming that the uncorrected error at each monitor is \pm deltam $/ 2$.

NOTE: ORBC makes specific assumptions about the units used for deltax and deltam (m and mm , respectively). Meters must be used as the unit for all lengths in the lattice description.

ORBC

The ORBC command calculates optimized correction element strengths necessary to correct a given closed orbit in an accelerator with field errors. The command uses the MICADO ${ }^{[9]}$ procedure.

The orbit to be corrected is obtained using the FXPT command. The beamline submitted to FXPT must contain not more than 150 identically named elements at which the orbit is measured, and some number of identically named correction elements, defined by a KICK command, where the correction kicks are to be applied. The FXPT parameter itap (col. 55) must be set to 1 or 2. Before the first use (or pair of uses - see below) of ORBC it should be set to 1 ; this causes the corrections to be calculated for the original closed orbit with its errors. If only one iteration of corrections is desired, invoke FXPT with itap $=2$ and then run ORBC again; this will cause further corrections to be superimposed on the ones calculated in the previous pass. To see the corrected orbit, invoke FXPT with itap $=0$ or $2($ not 1$)$ after the last ORBC.

The correction calculations are performed when ORBC is invoked following the FXPT calculation with itap $=1$ or 2 . ORBC only calculates corrections for one plane (x or y) in each invocation; therefore if both horizontal and vertical corrections are wanted, two separate ORBC commands are needed after each FXPT.

The maximum number of iterations is $|\mathrm{n}|$ and must not exceed the lesser of 150 and the number of correctors. If n is negative, all intermediate iterations as well as the matrix relating orbit displacements to correction elements is printed out. If n is positive, only first and last iterations are printed and matrix print is suppressed.

Iteration is terminated when the iteration limit is reached, or when the residual errors in the corrected orbit are in the range ($-\operatorname{deltax} / 2$, deltax $/ 2$).

The final corrected orbit is computed using another FXPT command, this time with itap $=0$.

```
SEE ALSO: FXPT
    KEEP
    KICK
```


PAGE - Skip to Start of Next Page

The PAGE or \mathbf{P} command forces output to skip to the beginning of the next page. Header text may be inserted and a date-time stamp printed.

Format 1:

Format 1 (P in col. 1) is used to insert a line of text at the top of the next page. The output then continues normally. The date-time stamp option is not available with this format.

Format 2:

In addition to inserting a line of text at the top of the next page, this statement may be referenced by CYC to insert header text for its output, as well as the time/date stamp on option.

name $\quad(\mathrm{CH})$ Reference name. Must be provided if the command is used to define a header for CYC output.
m (IN) Date-time stamp selector.
$\neq 1$, The date-time stamp is omitted.
$=1$, A date-time stamp is appended to the header.
text (CH) Page header text. The maximum string length is 79 characters for Format 1 or 60 characters for Format 2. The text field may be blank.

When PAGE or \mathbf{P} is in a SYNCH subroutine, a page will be ejected each time the subroutine is invoked by a CALL command. If the subroutine is invoked by an iterative process, e.g. FITQ, SOLV, etc., the PAGE or \mathbf{P} command is bypassed. It is recommended that these commands only be used outside subroutines.

SEE ALSO: REM
 C

RUN

PARA - Define a Parameter Value

name (CH) Reference name.
fpval (FP) A floating point number.
$\exp \quad(I N)$ An exponent. If $\exp =0$ or blank, the floating point value itself is stored. If $\exp \neq 0$, then the value of $f p v a l$ times 10 to the power exp is stored for use by the program.

The parameter values specified by PARA commands may be updated in the output when a new SYNCH input file is created by the UPDAT command. Otherwise, the PARA command functions like the $=$ command.

SEE ALSO: SELCT
 UPDAT
 =

PBML - Print Beamline
The PBML command prints a sequential list of the elements that comprise the beamline, together with their position, name, cumulative and element lengths, command, and input data.

	PBML bmln
bmln	(CH) Name of beamline.

PCYC - Select Restricted CYC Print List

The PCYC command defines the initial characters of the names of elements to be printed in the CYC or FXPT output when abbreviated output is requested.

a1, ... (CH) Any single letter or special character.
The PCYC command defines a list of characters used to select elements at which output is to be produced. If, in the CYC or FXPT commands, the m parameter is negative, output is suppressed except at elements whose names begin with one of the characters in the list. Up to 12 characters can be specified in a PCYC command. Only one PCYC list is active at a time; the last one defined will be used.

If a PCYC command is placed in a subroutine, it is not active until the subroutine is invoked.
If no PCYC command precedes the CYC or FXPT command, the default character for selective printing, the \# character, is used.

```
SEE ALSO: CYC
    FXPT
```


PRNT - Print Element Parameter

The PRNT command causes printing of specified parameters of a list of elements.

m (IN) Number of the parameter to be printed for each element a1 The default is $\mathrm{m}=1$.
n (IN) Parameter type identifier
$=1$, Floating point input number in the statement defining a1 \ldots.
$=2$, Alphanumeric input character string in the statement defining a1 \ldots.
$=3$, Integer input number in the statement defining a1 \ldots.
$=4$, Not used.
$=5$ or blank, Internally calculated floating point number of a1 \ldots. (Default).
$=7$, Floating point number from LQ2 storage (for debugging use).
$=8$, Floating point number from LQ3 storage (for debugging use).
a1 ... (CH) Names of statements for which data is to be printed.
The PRNT command prints out the current value of the m-th parameter of type n of each element or variable listed, a1, a2, a3, ..., ak.

Example 1: Printing parameter values:

K	$=$	2.				
K1	$=$. 002				
K2	$=$	-2.		/		1000.
K3	PARA	. 003				
K4	PARA	-3.		-		
K5	CALC	RCL	K	CHS	. 001	
	PRNT	K	K1	K2	K4	K5

The above PRNT command generates the following output:

K	K1	K2	K3	K4	K5
2.0	.002	-.002	.003	-.003	-.002

PRNT

Example 2: In order to print out magnet parameters, etc., one uses the $n=1$ option:

LQ	$=$			1.8					
QF	MAG			2.		. 002		1.	
QD	MAG			2.		-. 00		1.	
QF1	MAG			LQ		K1		1.	
QD1	MAG			LQ		K2		1.	
QF2	MAG			LQ		K3		1.	
QD2	MAG			LQ		K4		1.	
	PRNT	1	1	QF	QD	QF1	QD1	QF2	QD2
	PRNT	2	1	QF	QD	QF1	QD1	QF2	QD2
	REPL	1		QF	F	2.2			
	REPL	1		LQ	F	1.9			
	PRNT	1	1	QF	QD	QF1	QD1	QF2	QD2

The above three PRNT statements generate the following output:

QF	QD	QF1	QD1	QF2	QD2
2.0	2.0	1.8	1.8	1.8	1.8
QF	QD	QF1	QD1	QF2	QD2
0.0025	-0.0025	0.002	-0.002	0.003	-0.003
QF	QD	QF1	QD1	QF2	QD2
2.2	2.0	1.9	1.9	1.9	1.9

PRTV - Print a List of Vectors
The PRTV command prints the values of the components of a list of vectors defined by VEC statements.

vi
(CH) Names of the vectors to be printed.
The VEC command is used to define vectors of any length. The PRTV command is used to display their values.

The command pair (VEC, PRTV) is to be distinguished from the pair (PVEC, PRV7).

SEE ALSO: VEC
 PVEC
 PRV7

PRV7 - Print a List of Particle Vectors
The PRV7 command prints the values of the components of a list of particle vectors defined by PVEC statements.

vi
(CH) Names of the particle vectors to be printed.
The PVEC command is used to define seven-component particle vectors. The PRV7 command is used to display the values of these vectors.

The command pair (VEC, PRTV) is to be distinguished from the pair (PVEC, PRV7).

```
SEE ALSO: VEC
    PVEC
    PRTV
```

PVEC - Define Particle Vectors

The PVEC command is used to define phase space state vectors for one or more particles.

pv (CH) Reference name.
m (IN) Number of particle vectors to be defined.
n (IN) Define the value of the 7th component of the vector(s).
$=0,1$ or blank, The 7 th component is 1 .
$\neq 0,1$ or blank, The 7 th component is 0 .
$\mathrm{x} i \quad(\mathrm{FP})$ Horizontal displacement.
xpi (FP) Horizontal slope.
y $i \quad(F P)$ Vertical displacement.
ypi (FP) Vertical slope.
dsi (FP) The azimuthal displacement of the particle relative to the reference particle.
dp/pi (FP) Fractional momentum error.
The PVEC is used to define a set of particle state vectors for use as initial values in tracking calculations. The state vectors are vectors in the 7 -dimensional phase space.

Particle vectors may be displayed by using the PRV7 command.
Particle vectors are to be distinguished from more general vectors defined by the VEC command.

```
SEE ALSO: FXPT
    PRV7
    VEC
```


RAND - Generate Random Number

RAND returns a pseudo-random number in a range defined by the user.

rn $\quad(\mathrm{CH})$ Name of variable to be assigned the value of the random number.
m, n Repetition counters.
$\mathrm{m}=0, \mathrm{n}=0$, Run the random number generator once.
$\mathrm{m} \neq 0, \mathrm{n} \neq 0$, Run the random number generator $\mathrm{m} * \mathrm{n}$ times so as to obtain a new seed for the next use of random numbers.
x , y (FP) Scale factors to determine the range of values returned in rn. The returned value is determined by

$$
\mathrm{rn}=\mathrm{x}+(g-.5) * \mathrm{y}
$$

where g is a random number in the range $[0,1)$. Then the range of values spanned by rn is $[\mathrm{x}-\mathrm{y} / 2, \mathrm{x}+\mathrm{y} / 2)$: an interval of width y centered at x .
z
(FP) Initialization value to reset the seed for random number generator. The seed is reset before any random numbers are generated. Seed values should be large odd integers, with a decimal point included.

The internal random number generator generates pseudo-random numbers in the range $[0,1)$. The input parameters x and y are used to scale the internal value into the range required for the calculations.

REF - Matrix Reflection

REF creates the transfer matrix of the beamline that is the mirror reflection of another beamline.

$r \quad(\mathrm{CH})$ Name of the transfer matrix of the mirror-reflected beamline.
p (CH) Name of the transfer matrix to be reflected.
REF creates a new transfer matrix r which represents the reflection of p ; i.e., if p represents the transfer matrix corresponding to the sequence of elements $A_{1}, A_{2}, \ldots, A_{n}$, then r represents the transfer matrix corresponding to the sequence $\bar{A}_{n}, \bar{A}_{n-1}, \ldots, \bar{A}_{2}, \bar{A}_{1}$, where \bar{A}_{i} is the matrix corresponding to the reflection of A_{i}. Thus, if the horizontal portion of p is represented by

$$
P_{x}=\left[\begin{array}{lll}
a & b & e \\
c & d & f \\
0 & 0 & 1
\end{array}\right],
$$

then

$$
R_{x}=\left[\begin{array}{ccc}
d & b & -d e+b f \\
c & a & -c e+a f \\
0 & 0 & 1
\end{array}\right] .
$$

is the matrix for the reflected beamline.
The primitive elements, magnets and drifts, which comprise a beamline are naturally selfreflecting. It is possible, however, that a beamline may include in its definition a matrix representing a portion of another beamline that is not self-reflecting. But even in this case, the r matrix will be a correct representation of the reflected beamline, thought of in terms of its primitive elements.

REM - Insert Remark in Output Listing
The REM command inserts a comment in the output file and/or defines headers for tables of lattice functions written by CYC commands. A date-time stamp in the table header is optional.

name $\quad(\mathrm{CH})$ Reference name. Used by CYC to reference the REM statement.
m (IN) Date-time stamp option switch.
$\neq 1$, No date-time stamp is appended.
$=1$, A date-time stamp is appended to header on each page of the tables written by CYC commands.
text (CH) Comment text. Maximum of 60 characters.
The REM command inserts the text string in the output listing, as do the \mathbf{C} and \cdot commands.

```
SEE ALSO: C
    PAGE
    P
    CYC
```

REPL - Replace One Parameter With Another
REPL substitutes a new value for a parameter of another statement.

m (IN) Index number of the parameter to be replaced.
stmt (CH) Reference name of the statement for which the parameter is to be replaced.
type $\quad(\mathrm{CH})$ The type of data value to be replaced. The new value replaces the m -th parameter of the corresponding type.
$=F$, (Default) The new data value is type FLOATING POINT.
$=C$, The new data value is type CHARacter.
$=I$, The new data value is type INTEGER.
$=K A$, The new data value is an INTEGER value for the parameter m .
$=K B$, The new data value is an INTEGER value for the parameter n .
$=\mathrm{SF}$, The new data value is a SYMBOLIC FLOATING POINT value, which replaces a floating point value (either type F or SF).
value \quad Numeric or symbolic value as required by type defining the replacement value for the parameter.

REPL causes the value of the m-th parameter of type type associated with stmt to be replaced by value.

REPL changes only the input data, not the corresponding matrix. The matrix will be updated only if the command is re-executed, as in a SYNCH subroutine.

REPL

Example:

Here, the second parameter (gradient $=-50.0$) of the MAG statement QD is replaced by -50.05 .
The following example shows the use of a Symbolic Floating Point value to effect the same change.

Equivalently one may write

In both examples, the matrix associated with QD is not updated until the MAG command is re-executed.

SEE ALSO: INCR

ROT - Rotate a Beamline Element

The ROT command calculates the transfer matrix of a beamline element, rotated about the longitudinal s-axis.

name $\quad(\mathrm{CH})$ Reference name of the rotated element.
elmn (CH) Reference name of the element which is to be rotated.
theta (FP) Value of the rotation angle, in degrees. In the right-handed $x y s$ system, a positive theta rotates the x-axis towards the y-axis.

SEE ALSO: ROTZ

Section 8.2, Linear Elements

ROTZ - Define Rotation Matrix

The ROTZ command defines a matrix representing a rotation in the transverse $x-y$ plane about the longitudinal s axis.

name
(CH) Reference name of the matrix representing the rotation.
theta (FP) Angle of rotation about the s-axis, in degrees.

SEE ALSO: ROT

Section 8.2, Linear Elements

RUN - Start of Run

The RUN statement signals the start of a SYNCH run, and must be the first of the set of statements that comprise the input.

name $\quad(\mathrm{CH})$ A name which will be printed in the output listing as a run-identifier. This name is required only if the RUN statement is referenced by a CYC command.
m (IN) Date-time stamp selector. The RUN statement may be referenced by name by a CYC statement, in which case the text is used as a header for the tables written by the CYC command. A date-time stamp is appended to the text string in the header. $\neq 1$, The date-time stamp is omitted.
$=1$, A date-time stamp may be appended to the text string.
text (CH) Arbitrary comments (up to 60 characters in columns 21-80) which will be printed in the output listing.

The RUN statement must be used to signal the start of a SYNCH run. The name and any comments in the text field are printed at the beginning and end of the output listing for identification. The date and time are also printed at the start of the output listing.

SEE ALSO: STOP

SELCT - Delimiter Marker

The SELCT command is a marker to delimit a set of PARA commands, which may be updated by an UPDAT command.

```
----+----1----+-----2----+-----3----+----4-----+----5----+----6----+--------------------
    name SELCT
----+----1----+----2----+----3----+----4----++----5----+----6----+-------------------
```

name $\quad(\mathrm{CH})$ Reference name to identify a group of PARA commands which may be updated. The group must be enclosed by a pair of SELCT commands having the same reference name.

The SELCT command is used to delimit groups of one or more PARA commands, the parameter values of which are to be updated by the results of the current run before being written to a file by an UPDAT command. The group to be updated is identified by preceding and following it by SELCT commands bearing the same name.

SELCT commands cannot be nested.
Each pair of SELCT commands must have a unique name.

SEE ALSO: UPDAT

SHF - Define a 3×3 Shift Matrix

The SHF command defines 3×3 shift matrices in the transverse dimensions.

The SHF command defines shift matrices, used to describe alignment errors, in the transverse coordinates. The matrices are of the form

$$
S_{x}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{mx1} \\
0 & 1 & \mathrm{mx} 2 \\
0 & 0 & 1
\end{array}\right], \quad S_{y}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{my} 1 \\
0 & 1 & \mathrm{my} 2 \\
0 & 0 & 1
\end{array}\right] .
$$

The equivalent 7×7 matrix is

$$
S=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \mathrm{mx} 1 \\
0 & 1 & 0 & 0 & 0 & 0 & \mathrm{mx} 2 \\
0 & 0 & 1 & 0 & 0 & 0 & \mathrm{my} 1 \\
0 & 0 & 0 & 1 & 0 & 0 & \mathrm{my} 2 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

SEE ALSO: SHF7
Section 8.8, Magnet Misalignment Calculations

SHF7 - Define a 7×7 Shift Matrix

The SHF7 command defines a 7×7 shift matrix, used for misalignment calculations.

The shift matrix defined by SHF7 is of the form

$$
S=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \mathrm{r} 17 \\
0 & 1 & 0 & 0 & 0 & 0 & \mathrm{r} 27 \\
0 & 0 & 1 & 0 & 0 & 0 & \mathrm{r} 37 \\
0 & 0 & 0 & 1 & 0 & 0 & \mathrm{r} 47 \\
0 & 0 & 0 & 0 & 1 & 0 & \mathrm{r} 57 \\
0 & 0 & 0 & 0 & 0 & 1 & \mathrm{r} 67 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

SEE ALSO: SHF
Section 8.8, Magnet Misalignment Calculations

SIZE - Define Size of Matrices

The SIZE command is used to override or reset the default specification for the dimensionality of the state vectors and transformation matrices used by SYNCH and to control the formatting of printed output.

k
(IN) Defines the dimension of matrices and state vectors used within SYNCH.
$=3$, The state vectors are 3 -dimensional and the matrices, 3×3. This is the default size with most commands.
$=7$, The state vectors are 7 -dimensional and the matrices, 7×7.
The matrices and state vectors used by SYNCH are, for some commands, intrinsically 3 -dimensional and for others, 7-dimensional. Internally, SYNCH elevates 3-dimensional entities to 7 -dimensions and performs all calculations in a 7 -dimensional space.

The MMM command provides an exception to this general rule. When a matrix is defined by MMM to be the product of a set of intrinsically 3×3 matrices (for example, drifts, dipoles and quadrupoles) the matrix will be stored as a 7×7 matrix if SIZE has been used to specify 7 -dimensional vectors/matrices. This provides for improved efficiency of execution at the expense of larger required memory. If any of the matrices referenced by the MMM command are 7×7, the resulting matrix will be 7×7 regardless of any SIZE command.

When SYNCH is instructed to print a state vector or a matrix, it will by default print the entity in its intrinsic dimension. This may be inconvenient when comparing results. In this case, using the SIZE command allows the user to force all the matrices and state vectors to be printed as either 3- or 7-dimensional entities. It is only with the WMA command that this is a concern.

SIZE

The state vectors on which SYNCH operates are, in 3-dimensions, defined to be,

$$
\left[\begin{array}{c}
x \\
x^{\prime} \\
\delta
\end{array}\right],\left[\begin{array}{c}
y \\
y^{\prime} \\
\delta
\end{array}\right]
$$

and, in 7 dimensions,
$\left[\begin{array}{c}x \\ x^{\prime} \\ y \\ y^{\prime} \\ h \\ \delta \\ 1\end{array}\right]$
where $x, y=$ displacements, $x^{\prime}, y^{\prime}=$ slopes, $\delta=d p / p$, the fractional momentum error, and $h=$ $-d s=-($ azimuthal position of particle relative to position of reference particle).

SEE ALSO: WMA

SMIN - Access MINUIT from SYNCH

The SMIN command allows the user to directly submit MINUIT ${ }^{[6]}$ commands from within a SYNCH program.

m (IN) The total number of MINUIT commands to be submitted.
stati MINUIT command string. The data are formatted like the corresponding MINUIT command: a 10 -character field for the command name followed by 5 floating point data, each in a field 10 characters wide, all offset to start in column 21 rather than column 1. See the MINUIT manual for descriptions of the available commands.

MINUIT is a standard fitting package, distributed by CERN, used by the SYNCH command SOLV. The SMIN command allows the user to control the use of MINUIT by SOLV. If the input does not contain an SMIN statement, the MINUIT commands

```
PRINTOUT 0.
MINIMIZE 1000. 1.0
END RETURN.
```

will be executed by SOLV.

Example:

FIT	SMIN	4	PRINTOUT SEEK SIMPLEX END RETUR	2. 500. 1500.	0.1

SEE ALSO: SOLV

SOL - Solenoid

The SOL command defines a solenoid magnet.

name (CH) Reference name of the element defined by the SOL command.
length (FP) Effective solenoid length.
brho (FP) Magnetic rigidity of the particle beam, $B \rho$.
b0 (FP) Solenoid magnetic field, B.
SOL computes a transfer matrix (which effects $x-y$ coupling and focusing) for a solenoid.
As in the case of MAG, the parameters brho and b0 may be scaled by an arbitrary factor without changing the actual computational result; only the ratio of these two quantities is significant. Convenient choices are:
1.

brho $=$ magnetic rigidity
b0 $=$ solenoid field
2.

brho $=1$
$1 / \mathrm{rho}=$ field $/$ rigidity $=1 /($ radius of curvature of particle in field of solenoid $)$

SOL

3.

$$
\begin{aligned}
\text { theta }= & \text { length } \times \text { field } / \text { rigidity } \\
= & \text { deflection angle of the particle if it were to traverse the distance } \\
& \text { length in a transverse field equal to the solenoid's longitudinal field }
\end{aligned}
$$

SEE ALSO: TRK
FXPT
Section 8.2, Linear Elements

SOLV - General Fitting Routine

SOLV is used to obtain specified values of the betatron functions at various points along a beamline. The betatron functions are tracked from given initial values through the beamline by TRKB, then SOLV invokes the MINUIT optimization program to minimize a goodness-of-fit function, $F C N$. SOLV may also be used to fit matrix elements or parameters defining non-linear MAP or DEQ statements.

cmd (CH) Name of a TRKB statement that implements tracking of the betatron functions along the beamline or of an MMM statement which defines a transfer matrix that is to be fitted using the MTRX constraint.
pos1,pos2 (IN) Optional. Start and end positions to be used in the TRKB statement. If present, these values override the values given in the TRKB statement.
itr (IN) Maximum number of iterations in the fitting process (default $=1000$).
itol (IN) Exponent of desired tolerance on FCN, (see 'The Fitting Procedure' below).
prn (IN) MINUIT control parameter. Printout level selector. The MINUIT summary output is written to FORTRAN logical unit 4 (see Appendix A). Setting prn $=0$ produces the least output.
sav (IN) Controls disposition of fitted variable values.
$=0$ or blank, The fitted values of the variables replace the starting values.
$=1$, The fitted variables retain their original values upon completion of fitting.

SOLV

pri (IN) Control printing of betatron functions. $=0$ or blank, Print the betatron functions before and after fitting.
$=1$, Print betatron functions after fitting only.
$=2$, Do not print betatron functions.
lambda (FP) Factor used if the magnitudes of the variables are to be included in the goodness-of-fit function. See the section on the variables, below.

Specifying the Constraints

The m lines following the SOLV command line specify the fitting constraints. Each constraint line has the following format.

bcon (CH) Name of the quantity or quantities fitted to the value des at location(s) jp1, jp2,
Listed below are the possible choices for bcon (with one exception to be explained below, under type).

AX, AY \quad Fit alpha function: $\alpha_{x}=$ des or $\alpha_{y}=$ des.
AXAY \quad Fit $\alpha_{x}=\alpha_{y}=$ des.
AXMY \quad Fit $\alpha_{x}-\alpha_{y}=$ des.
ARFL \quad Fit $\alpha_{x}=-\alpha_{y}$ and $\beta_{x}=\beta_{y}$. If des $\neq 0$ then set $\beta_{x}=\beta_{y}=\operatorname{des}$.
BX, BY Fit beta function: $\beta_{x}=$ des or $\beta_{y}=$ des .
BXBY \quad Fit $\beta_{x} / \beta_{y}=$ des.
BXMY \quad Fit $\beta_{x}-\beta_{y}=$ des.
DX, DY Fit slope of dispersion function: $\eta_{x}^{\prime}=$ des or $\eta_{y}^{\prime}=$ des.
GX, GY Fit gamma function: $\gamma_{x}=$ des or $\gamma_{y}=$ des .
MTRX Constrain element (jp1,jp2) of matrix cmd on the SOLV command line to be equal to des. Note that jp3, ..., jp6 should be left blank.
NUX, NUY Fit cumulative phase advance, $\nu_{x}=$ des, or $\nu_{y}=$ des, in units of 2π.
RND \quad Fit $\alpha_{x}=\alpha_{y}=\eta_{x}^{\prime}=0$ and $\beta_{x} / \beta_{y}=$ des.
RND2 Fit $\alpha_{x}=\alpha_{y}=0$ and $\beta_{x} / \beta_{y}=$ des.
S \quad Fit cumulative path length: $S=$ des.
THET Fit cumulative bending angle: $\theta=$ des.

VX, VY	Constrain x or y-coordinate of tracked ray to be equal to des.
VDX, VDY	Constrain slope of x or y-coordinate of tracked ray to be equal to des.
WST	Fit $\alpha_{x}=\alpha_{y}=\eta_{x}^{\prime}=$ des.
X, Y	Fit dispersion function: $\eta_{x}=$ des or $\eta_{y}=$ des.
XDX	Fit $\eta_{x}=\eta_{x}^{\prime}=$ des.

blank Unmodified constraint, as defined in the table above under bcon.
NO Ignore this constraint.

DIF Make the values of the quantity bcon at positions jp2, jp3, ... equal to the value at position jp1.
SUM Make the values of the quantity bcon at positions jp2, jp3, ... equal to the negative of the value at position jp1.

LSTN Add (bcon - des) ${ }^{\text {jp1 }}$ to $F C N$ at every position in the ranges jp2-jp3 and jp4-jp5.
$<\quad$ Add (bcon - des $)^{4}$ to $F C N$ if bcon $>$ des .
$>\quad$ Adds $(\text { bcon }- \text { des })^{4}$ to $F C N$ if bcon $<$ des.
$<>\quad$ Adds $(\mid \text { bcon } \mid- \text { des })^{4}$ to $F C N$ if \mid bcon $\mid>$ des.

BFIT Fit all of the betatron functions tracked to position jp1 to be equal to those of the previously defined matrix whose name is specified by bcon.
In this case, set des $=0$.
jpi (IN) Position number(s) in beamline at which the constraint bcon is to be applied. See also constraint type MTRX under bcon and LSTN under type for other meanings of the indices jpi.

Alternatively, the positions jpi can be specified by the character names of the corresponding beamline elements. If the position represents the $k^{t h}$ instance of the element, then $k(1 \leq k \leq 9)$ should be placed in the $5^{t h}$ position of the field.
des (FP) Desired value of the quantity to be fitted.
sigma (FP) Desired tolerance on fitted value. (The inverse weight.)

SOLV

Each of the m constraint lines specifies a constraint to be applied at one or more beamline positions. If no positions are specified on a constraint line, those positions which have been most recently given on a preceding constraint line will be used.

If the constraint name, bcon, is not recognized, the constraint will be ignored. However, any positions entered on such a line will be available for use by subsequent lines.

Specifying the Variables

Each variable (element) has one or more associated parameters. For example, the parameters associated with a magnet are its length, gradient, beam rigidity, strength, and entrance- and exitface angles. Each parameter is referred to by its sequence number in the defining command.

The next n lines specify the variables (parameters) that are to be varied in the fitting.
There are two formats available to specify the variables. Each Format 1 line can specify up to five variables and the number of the parameter to be fitted. (The number of the parameter is the same for each of the variables.) Each Format 2 record specifies one variable and up to five of its parameters. Each record also specifies the upper and lower bound on the fitting variables and the step size to be used.

Format 1:

Format 2:

The Fitting Procedure

The ipm-th parameters of the vr are varied through various minimization routines to satisfy the constraints, bcon. A fit has been accomplished when the value of the function

$$
F C N=\Sigma\left\{[(\text { value }- \text { des }) / \text { sigma }]^{2}\right\} / m
$$

where m, the number of fitting constraints,* is below $10^{2 \times i t o l}$. If the value of $F C N$ does not reach $10^{2 \times \text { itol }}$ within itr calls to MINUIT, execution of the SOLV statement is halted.

If the parameter to be fitted, the $i \mathrm{ipm}^{\text {th }}$ of the variable vr, was originally defined symbolically, then it is preferable to fit the first parameter of the symbol. Thus, use

rather than

since in the latter case the symbol K1 in the Q1 definition will be replaced with the numerical value obtained in the optimization.

The default MINUIT commands for the SOLV statement are

```
PRINTOUT 0.
MINIMIZE 1000. 1.0
END RETURN.
```

These defaults may be changed by the SMIN command.
SEE ALSO: SMIN
Appendix B, Sample SYNCH programs

[^3]
STOP - End of Job

The STOP command terminates a SYNCH job.

A SYNCH job consists of one run, which is initiated by a RUN command and terminated by a STOP command. The STOP command also marks the end of the job.
stat (CH) If the keyword STAT is present, a summary table of storage usage will be printed at the end of the output.

STOP closes various files while complying with any KEEP requests.
NOTE: In earlier versions of SYNCH, a FIN command terminated the run, allowing one to stack multiple runs in one job. This feature has been eliminated.

[^4]SUB - Define a SYNCH Subroutine

The SUB command marks the beginning of a SYNCH subroutine.

name (CH) Name by which the subroutine is referenced.
A SYNCH subroutine is a set of commands that are included between SUB and END commands. These commands are not executed until name is invoked by a command such as CALL, FITQ, MESH, SOLV, VPAR. When the subroutine is invoked, the included commands are executed sequentially.

A SYNCH subroutine may be executed repeatedly within a SYNCH program when referenced by CALL, ... statements or by appearing in other commands. When the name of a subroutine is used as input to a command other than a CALL, the named subroutine is called during execution of that command. By including INCR commands and calling the subroutine repetitively, one may perform calculations over a range of variable values.

A CALL statement may be included in a SYNCH subroutine but a subroutine may not call itself. CALL statements may be deactivated but SUB and END statements should never be deactivated.

Any SYNCH commands except RUN and STOP may be included in a subroutine to be invoked by CALL, MESH, VPAR, but it is preferable to include in the SYNCH subroutine only commands that cause some calculation to be made. Commands that only store information, like

BML EQU MAT3 PAGE PARA REM VEC
are best placed outside of SYNCH subroutines.
If the subroutine is to be invoked by any other commands, e.g. FITQ, SOLV, then only the following commands may be included in the SYNCH subroutine:

$* *$	$=$	CALC	CYC	DRF	INV	KICK
MAG	MAGV	MMM	MOVE	MXV	NPOL	REF
ROT	SHF	SHF7	SOL	SUM	TAB	TRKB
TRKE	TRKM					

SEE ALSO: CALL
 END
 INCR

CHAPTER 5 - SYNCH COMMANDS

SUM - Scalar Summation

The SUM command calculates the sum of a set of scalars.

name (CH) Reference name.
m
(IN) Number of values to be summed.
si
(FP) Numbers to be summed.

SEE ALSO: CALC

SXTP - Sextupole Definition
The SXTP command is used to define a sextupole magnet.

name (CH) Reference name.
n (IN) Defines normal or skew field.
$=0$ or blank, A normal sextupole field is used.
$\neq 0$, A skew sextupole field is used.
length (FP) The length of the magnet. The thin lens kick is applied at the mid-point of the magnet, length $/ 2$.
$\mathrm{d} 2 \mathrm{~b} \quad(\mathrm{FP})$ The sextupole coefficient, $\mathrm{d} 2 \mathrm{~b}=B^{\prime \prime}(0)$.
The sextupole strength is defined in terms of d2b by

$$
S=(\text { length })(\mathrm{d} 2 \mathrm{~b}) /(\text { brho }) .
$$

If the input specifies length $=0$, length $=1$ is used in this calculation.
brho (FP) The magnet rigidity of the beam.
exac (IN) Select thin-lens approximation or exact calculation.
$=0$ or blank, The sextupole magnet is approximated by a thin-lens located at the center of the magnet.
$\neq 0$, Use an exact calculation using a method by B. Autin, CERN ${ }^{[9]}$ based on elliptic functions. The method is valid only if the particle trajectory lies entirely in the horizontal plane and if the length of the magnet is non-zero.

The SXTP command defines a sextupole magnet, usually in the thin-lens approximation. In the thin lens approximation the parameter length may take any non-negative value. If length >0 the thin lens acts at the center of the magnet.

A more exact approximation ${ }^{[9]}$ is available when length >0 and the particle trajectory is in the horizontal $(y=0)$ plane. It is invoked by setting exac $\neq 0$.

```
SEE ALSO: NPOL
    CYC
```

TRK - Track Particles Through Beamline

The TRK command tracks particles, one at a time, through a series of linear and nonlinear transformations which comprise a beamline.

namv (CH) Name of PVEC statement defining initial state vectors of the m particles. These values are defined relative to the state vector of the reference particle (see refv).
bmln (CH) Name of the beamline (defined by a BML command) through which to track.
mtrx $\quad(\mathrm{CH})$ Optional. Name of matrix which gives beta functions at print positions. Some output is conditional on mtrx being defined:

- If mtrx is given, the output includes the action variables e_{x} and e_{y}.
- If both mtrx and refv are given, the output includes the action variables e_{x} and e_{y} and the phases ψ_{x} and ψ_{y}.
refv (CH) Optional. Name of PVEC statement specifying the initial state vector of the reference particle to be tracked through the beamline.
ntr (IN) Number of transits of bmln to be made by each particle.
iof (IN) Output frequency.
$=00001$, Write output at each position of the beamline each transit.
$=0 r 00 \mathrm{p}$, Write output at the p -th position every r-th transit.

TRK

isav (IN) Save option for tracked vectors.
$=0$, Do not save the tracked vectors.
$=1$, Save tracked vectors for subsequent use. The saved vectors overwrite the contents of namv. In subsequent TRK statements using the same namv one must set $\mathrm{n}=0$.
imod (IN) Tracking mode.
$=0$ or 1 , Track using stored matrices for the linear elements.
$=2$, Track, recalculating the effect of each beam element on the ray rather than using stored matrices. Save the cumulative matrix representing linearized motion relative to the tracked ray.
$=5$, Same as case 2 , but do not save cumulative matrix.
ipr (IN) Print option.
$=-1$, Printing is suppressed.
$=0$, Print full output listing.
$=2$, Print only lines with elements tagged by symbol \# or those defined by a PCYC command.
npr (IN) Print frequency. Print every npr-th position along beam line. The default is to print every line.

The TRK command tracks m particles through the beamline bmln ntr times. The beamline may contain non-linear elements.

WARNING: A blank line MUST be included after the TRK line of the input.

SEE ALSO: FXPT

TRKB - Track Betatron Functions

The TRKB command tracks the values of the betatron functions through a beamline. Initial values must be specified at the beginning of the beamline.

name (CH) Reference name.
$m, n \quad(I N)$ Allocate storage to save the table of betatron functions, for use by SOLV.
$m=-1$, No storage is reserved; function table is not stored.
$\mathrm{m}=\mathrm{n}=0$, or blank, Save the entire function table.
$0<\mathrm{m}<\mathrm{n}$, Allocate storage to save the table for positions m through n . (See parameters pos1 and pos2.)
bmln (CH) Name of beamline, defined by a BML statement, through which to track betatron functions.
bet0 $\quad(\mathrm{CH})$ Source of initial values of the betatron function.
$=$ name of IBET statement. The initial values are defined by the IBET statement.
$=$ name of matrix. Name of a matrix previously defined, by, for example, an MMM statement, from which to extract initial values of the betatron functions.
refv (CH) Optional. Name of a PVEC statement which defines the initial transverse coordinates of the particle to be tracked through the beamline.
efmt (CH) Output format.
= blank, Use the default F-format code in the output format specifications.
$=$ EFORM, Use the E-format code to allow display of values which overflow the default
F-format in the standard output.
pos1 (IN) Begin tracking at position number pos1 of beamline bmln. Position 0 is the upstream end of the first element; position $n>0$, the downstream end of the n-th element.
$=0$ or blank, Begin tracking at position 0, the start of the beamline.
>0, Begin tracking at position pos1 in the beamline.
Note: If a value pos1 >0 is given then a value pos $2>0$ must also be given.

TRKB

pos2 (IN) End tracking at position number pos2 of beamline bmln.
$=0$ or blank, Track to the end of the beamline.
>0, End tracking at position pos2 in the beamline.
itbl (IN) Select option to get initial values from TRKB table.
$=0$ or blank, The initial values of the betatron functions are determined by the bet0 option.
= 1, Get the initial values from a previously calculated TRKB table for the beamline: On the first invocation of TRKB for the beamline, determine the initial values by the bet0 option. Otherwise, take the initial values at position pos1 from the TRKB table.

To use this option, the TRKB statement must be included in a SYNCH subroutine. By changing the value of pos1 by using the REPL command, one can track a beamline in successive segments.
irad (IN) Define units for phase advance.
$=0$ or blank, Print the tune, $\nu=\psi / 2 \pi$.
$=1$, Print value of ψ in radians.
s0 (FP) Optional. Initial value of path length at position 0.
th0 (FP) Optional. Initial value of horizontal angle at position 0 .
TRKB propagates the initial values of the betatron functions through the specified beamline. No periodicity conditions are implied for the betatron functions. One may think of this as describing the evolution of a prescribed phase space ellipse through the beamline.

The values of the functions are printed at the beginning of the beamline and at the end of each element. They may also be saved for use by a SOLV command.

The table produced by TRKB lists the position sequence number, the element name, the accumulated path length, and, for both horizontal and vertical planes, the tune, β, α, η, and η^{\prime}. In addition, if the parameter refv is given, the table is extended to include the coordinates of a particle vector that evolve from the initial values given by the PVEC statement. If there is no particle vector specified, the quantity $\mathcal{H}=\gamma_{x} \eta_{x}^{2}+2 \alpha_{x} \eta_{x} \eta_{x}^{\prime}+\beta_{x} \eta_{x}^{\prime 2}$, the Courant-Snyder invariant [4] of the dispersion, is printed.

SEE ALSO: SOLV

TRKE - Track Beam Envelopes
The TRKE command calculates the beam envelopes defined by the betatron functions and the (transverse) beam emittances through a beamline.

name (CH) Reference name.
m, n (IN) Allocate storage to save the table of betatron functions calculated, for use by SOLV.
$\mathrm{m}=-1$, No storage is reserved; function table is not stored.
$\mathrm{m}=\mathrm{n}=0$ or blank, Save the entire function table.
$0<\mathrm{m}<\mathrm{n}$, Allocate storage to save the table for positions m through n . (See parameters pos1 and pos2.)
bmln (CH) Name of beamline, defined by a BML statement, through which to track betatron functions.
beto (CH) Source of initial values of the betatron function.
$=$ name of IBET statement. The initial values are defined by the IBET statement. $=$ name of matrix. Name of a matrix previously defined, by, for example, an MMM statement, from which to extract initial values of the betatron functions.
refv (CH) Optional. Name of a PVEC statement which defines the initial state vector of the particle to be tracked through the beamline.
eps (CH) Name of a preceding BVAL statement which defines the beam emittances.
pos1 (IN) Begin tracking at position number pos1 of beamline bmln. Position 0 is the upstream end of the first element; position $n>0$, the downstream end of the n -th element.
$=0$ or blank, Begin tracking at position 0, the start of the beamline.
>0, Begin tracking at position pos1 in the beamline.
Note: If a value pos $1>0$ is given then a value pos $2>0$ must also be given.

TRKE

pos2 (IN) End tracking at position number pos2 of beamline bmln.
$=0$ or blank, Track to the end of the beamline.
>0, End tracking at position pos2 in the beamline.
itbl (IN) Select option to get initial values from TRKE table.
$=0$ or blank, The initial values of the betatron functions are determined by the beto option.
$=1$, Get the initial values from a previously calculated TRKE table for the beamline: On the first invocation of TRKE for the beamline, determine the initial values by the bet0 option. Otherwise, take the initial values at position pos1 from the TRKE table.

To use this option, the TRKE statement must be included in a SYNCH subroutine. By changing the value of pos1 by using the REPL command, one can track a beamline in successive segments.
iadd (IN) Defines how the contributions to the beam envelope from momentum spread, $d p / p$, and emittance, epxco and epyco, are combined.
$=0$ or blank, Add the contributions in quadrature.
$=1$, Add the contributions algebraically.
epxco (FP) Closed orbit equivalent horizontal emittance. (See CYAE command.)
epycp (FP) Closed orbit equivalent vertical emittance. (See CYAE command.)
TRKE, like TRKB, propagates the betatron functions through the specified beamline. The betatron functions and beam emittances are then used to calculate the beam sizes $\sigma_{x}=\sqrt{\beta_{x} \epsilon_{x}}$ and $\sigma_{y}=\sqrt{\beta_{y} \epsilon_{y}}$, which are displayed in the printed output.

The parameters epxco and epyco are equivalent emittances for an ensemble of machines which allow the contribution to the beam envelope size due to misalignments to be estimated. See the command CYAE for discussion.

```
SEE ALSO: CYAE
    TRKB
```

TRKM - Track Through Non-linear Elements
The TRKM command tracks particles or beam envelopes through a beamline containing elements defined by DEQ statements.

name (CH) Reference name.
$m, n \quad$ (IN) Allocate storage to save the table of functions calculated, for use by SOLV.
$m=-1$, No storage is reserved; function table is not stored.
$\mathrm{m}=\mathrm{n}=0$ or blank, Save the entire function table.
$0<\mathrm{m}<\mathrm{n}$, Allocate storage to save the table for positions m through n . (See parameters pos1 and pos2.)
bmln (CH) Name of beamline, defined by a BML statement.
bet0 (CH) Source of initial values.
$=$ name of IBET statement. The initial values are defined by the IBET statement.
map $\quad(\mathrm{CH})$ Name of DEQk statement that is referenced in bmln.
par (CH) Name of a VEC statement that contains data to be passed to the internal subroutine that executes the transformation.
pos1 (IN) Begin tracking at position number pos1 of beamline bmln. Position 0 is the upstream end of the first element; position $n>0$, the downstream end of the n-th element.
$=0$ or blank, Begin tracking at position 0, the start of the beamline.
>0, Begin tracking at position pos1 in the beamline.
Note: If a value pos1 >0 is given then a value pos $2>0$ must also be given.

TRKM

pos2 (IN) End tracking at position number pos2 of beamline bmln.
$=0$ or blank, Track to the end of the beamline.
>0, End tracking at position pos2 in the beamline.
irad (IN) Define units for phase advance. $=0$ or blank, Print the tune, $\nu=\psi / 2 \pi$, where ψ is the phase advance in radians. $=1$, Print value of ψ.
step (FP) DEQk commands (e.g., the built-in example describing space charge effects) invoke a differential equation integrator. Parameter step is the path length step size passed to the integrator.

The TRKM command is used to track a particle through a beamline all of whose elements are defined by the same MAPk or DEQk subroutine. TRKM can be used in conjunction with SOLV to fit associated parameters to desired values.

One use of TRKM with SOLV is to design a quadrupole beamline to focus a beam influenced by space charge. The DEQ4 command, which integrates the Kapchinsky-Vladimirsky envelope equations, is used. The particle coordinates in this case represent the quantities ($\sigma_{x}, \sigma_{x}^{\prime}, \sigma_{y}, \sigma_{y}^{\prime}$) of the beam envelope.

SEE ALSO: Section 7.2, DEQ-Differential Equation Transformations

UPDAT - Create New Input File
The UPDAT command creates a new SYNCH input file by copying the original one and updating it with values resulting from the current run.

m
(IN) Select option for updating PARA statements.
$=0$ or blank, All PARA instructions are updated by replacing the initial parameter values by the latest values.
>0, Number of groups of PARA statements, delimited by named SELCT statements, to be updated.
lmb1, ... (CH) Names of the SELCT commands which delimit groups of PARA statements.

Parameter values specified by PARA commands in the input file may be updated, either selectively or in total, by the results of the current run. The new file may be used as input for a subsequent SYNCH run.

```
SEE ALSO: SELCT
    PARA
```

VAR - Define Variable by Current Value in Another Statement

The VAR command assigns to a named variable the current value of a specified parameter in a particular instance of a statement.

name $\quad(\mathrm{CH})$ Name of the variable to which the extracted value is to be assigned.
m (IN) Parameter position within the named statement from which the value is to be extracted.
stmt (CH) Reference name of the statement from which the parameter value is to be extracted.

The VAR command provides another means to copy the value of a particular parameter from one statement to another.

Example 1-

In this example, the value of the gradient, parameter 2 , of magnet $Q F$ is extracted to define the value assigned to GQF which is then used to define QFH, a half length version of QF.

VAR
Example 2-

L	DRF		2.							
SR	SUB									
QF	MAG		1.		0.05		1.			
QD	MAG		1.		-. 05		1.			
C	MMM		QF	L	QD	L				
	END									
	FITQ		SR	C	QF	QD	2	2	. 25	. 25
GF	VAR	2	QF							
GD	VAR	2	QD							
QFH	MAG		. 75		GF		1.			
QDH	MAG		. 75		GD		1.			
	CYC		-1 QFH	L	QDH					

The values of the gradients of $Q F$ and $Q D$ are not in fact the original values ± 0.05 indicated but rather the values that result from the FITQ. The use of the VAR statement ensures that the adjusted values are transferred to the half-length magnets QFH and QDH.

VEC - Vector Definition

The VEC command is used to define one or more vectors of dimension m. The vectors are arranged consecutively in storage. To refer to the i-th component of the k-th vector one must refer to the $(\mathrm{m} *(k-1)+i)$-th parameter of the VEC command.

SEE ALSO: PVEC

VPAR

VPAR - Loop Through SYNCH Subroutine on a Diagonal

The VPAR command repeatedly invokes a SYNCH subroutine while simultaneously incrementing several variables.

name (CH) Reference name.
m (IN) Number of variables to be varied.
sbr (CH) Name of SYNCH subroutine containing elements a1, ..., am.
$\mathrm{k} i \quad(\mathrm{IN})$ Refers to the $\mathrm{k} i$-th floating point variable in definition of element ai.
$\mathrm{a} i \quad(\mathrm{CH})$ Name of element containing the variable.
$\min i \quad(\mathrm{FP})$ Minimum value of variable $\mathrm{k} i$ of element a i.
$\max i \quad(F P)$ Maximum value of variable $\mathrm{k} i$ of element ai.
inc $i \quad$ (FP) Increment of the variable ki of element $\mathrm{a} i$.
The VPAR command implements the logical structure of a single FORTRAN DO-loop. The subroutine sbr is executed repeatedly while the control variables $\mathrm{k} i$ of elements a i are incremented by inci. All m variables are incremented for each invocation of sbr. Compare this command to MESH wherein the variables are incremented one by one as in a nested DO-loop structure.

The number of steps required to satisfy the range is calculated for each variable and the largest value determines the number of steps actually calculated. If the intervals are not integer multiples of the increments some truncation of the range may occur.

VPAR
Example:

The above code will produce a CYC print-out of the cell \mathbf{C} for the following combinations of the gradients of the magnets QF and QD: $(0.5,-1.0),(0.6,-0.9),(0.7,-0.8),(0.8,-0.7),(0.9,-0.6)$, and ($1.0,-0.5$).

SEE ALSO: MESH

WBE - Write Betatron Functions of Matrices

The WBE command writes out the betatron functions corresponding to a list of transfer matrices.

n
Print option selector. The betatron functions $\beta, \alpha, \mu / 2 \pi, D, D^{\prime}$, and W (defined below) for each plane are printed.
$=0$, Use $W=\sqrt{\beta}$. If $|\cos \mu|>1$, all the functions are set to 0 .
$=1$, Use $W=\operatorname{Tr} \mathrm{A} / 2$. The functions are not set to 0 when $|\cos \mu|>1$.
A1, ... (CH) Names of the matrices from which the betatron functions are determined.
The WBE command writes out the betatron functions for the transfer matrices labelled A1, A2, A3, ..., Am. Each transfer matrix can be represented as

$$
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu & A_{13} \\
-\left[\left(1+\alpha^{2}\right) / \beta\right] \sin \mu & \cos \mu-\alpha \sin \mu & A_{23} \\
0 & 0 & 1
\end{array}\right]
$$

in terms of the betatron functions and from this the function values can be determined. The other functions are

$$
W= \begin{cases}\sqrt{\beta}, & \text { if } \mathrm{n}=0 \\ \operatorname{Tr} \mathrm{~A} / 2=\left(A_{11}+A_{22}\right) / 2, & \text { if } \mathrm{n}=1\end{cases}
$$

and

$$
\begin{aligned}
D & =\frac{1}{2}\left[A_{13}+\left(A^{-1}\right)_{13}\right] /[1-\cos \mu] \\
D^{\prime} & =\frac{1}{2}\left[A_{23}+\left(A^{-1}\right)_{23}\right] /[1-\cos \mu] .
\end{aligned}
$$

Here, $\left(A^{-1}\right)$ is the inverse of A.
The betatron phase advance is determined from $\cos \mu=\operatorname{Tr} \mathrm{A} / 2=\left(A_{11}+A_{22}\right) / 2$, where

$$
\mu= \begin{cases}\arccos (\operatorname{Tr} \mathrm{A} / 2), & \text { if }|\operatorname{Tr} \mathrm{A}| \leq 2 ; \\ \operatorname{arccosh}(\operatorname{Tr} \mathrm{A} / 2), & \text { if }|\operatorname{Tr} \mathrm{A}|>2 .\end{cases}
$$

WFL - Print Out Internal Storage
The WFL command is used to print details of the internal storage used by SYNCH.

m (IN) Select time/condition for execution.
$=0$ or blank, Execute only on error.
$=1$, Execute immediately.
n (IN) Select information to be printed.
$=0$ or blank, Print portions of arrays CINFF and INFF relating to instructions named in this command. These arrays contain the command name, the reference name, the storage locations of input integer, floating point and character data, how many of each, and the value of each datum.
$=1$, Print as for $\mathrm{n}=0$ plus storage allocated for the instructions. The storage contains the matrices and/or whatever calculated output has been stored for the command. $=2$, Print as for $\mathrm{n}=1$ plus the contents of the working scratch storage area.

A1, ... (CH) Names of commands for which the internal storage data are required. If no names are listed, data for all instructions encountered prior to the WFL command are printed, including that of the internally defined matrices.

WMA - Write Matrices

A1, ... (CH) Names of previously defined transfer matrices.
The WMA command writes out the previously defined pairs of transfer matrices labelled A1, A2, A3, ... Am. If a SIZE command is in effect when WMA is invoked, the matrices will be printed accordingly. If no SIZE command has been issued, the matrices will be printed in 3×3 format if all the matrices in the list are represented internally as 3×3 structures. If any one of them is represented internally as a 7×7 structure, all the matrices in the list are printed in 7×7 format.

SEE ALSO: SIZE

$=-$ Equate to Floating Point Number

The $=$ command is used to define a scalar variable by equating it to a floating point numeric value, to another scalar variable, or to the result of an arithmetic operation on two such data.

Use 1:

name (CH) Reference name of the variable being defined or replaced.
float (FP) A floating point number or the name of a previously defined scalar variable.
The variable name is given the value float. The variable name may be substituted for a floating point variable in any SYNCH input statement and the value float will be used.

Use 2: Arithmetic Operations

name $\quad(\mathrm{CH})$ Reference name.
oprnd1, oprnd2 (FP) The operands. Floating point numbers, or names of previously defined scalar variables.
operator (CH) Operator identifying the operation to be performed. The allowed operators are $+,-, *, /$, or $* *$ indicating the operations of addition, subtraction, multiplication, division, and exponentiation, respectively.

The $=$ command assigns to name the value resulting from performing the designated operation on the operands. Operands can be either numerical values or the names of other variables.

SEE ALSO: PARA
 CALC

** - Raise a Matrix to a Power

name $\quad(\mathrm{CH})$ Name of the matrix which is created by the operation.
$\mathrm{k} \quad(\mathrm{IN})$ Power to which the matrix mtrx is to be raised.
mtrx $\quad(\mathrm{CH})$ Name of the matrix to be raised to the k-th power.

SEE ALSO: MMM

Period (.) - Comment

A period (.) in column 1 of any line identifies the line as a comment.

A period (.) in column 1 of a line causes any text entered in columns 2 through 80 to be treated as a comment. See the \mathbf{C} command for more details.

```
SEE ALSO: C
    REM
    P
    PAGE
```


6.0 MISCELLANEOUS FEATURES

6.1 The Negative of a Symbolic Floating Point Number

If a Symbolic Floating Point variable, V, has been previously defined, the negative of that variable can be used in a SYNCH statement by denoting it by $-V$.

Use of this feature requires that the variable name contain not more than 4 characters.

Example:

Here, magnet QF will have gradient 10.0 and magnet QD will have gradient -10.0.

6.2 Symbolic Entry for Inverse of a Matrix

If a matrix has been previously defined, its inverse may be used in a computation by preceding its name with a slash (/).

Use of this feature requires that the variable name contain not more than 4 characters.

Example:

Here, the matrix multiplication will be $P=\operatorname{inv}(B) \times A$.

6.3 Internally Defined Matrices

a) Unit matrix, (1):

$$
(1)=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

b) Symplectic matrix, (S):

$$
(S)=\left[\begin{array}{ccccccc}
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

The parentheses are part of the name and must be included when referring to these matrices.

6.4 Predefined Constants

The following constants are defined in SYNCH and may be referenced by name in the user's data sets.

$$
\begin{aligned}
& \text { PI }=3.141592653589793 \text { PIO2 }=\text { PI } / 2 \\
& \text { PI2 }=2 \times \text { PI } \quad \text { RADEG }=P I / 180 \\
& \text { TPI }=2 \times \text { PI } \quad \text { CFAC }=0.299792458
\end{aligned}
$$

6.5 Initially Deactivated Statements

A SYNCH statement can be initially placed in the deactivated state (see DEACT) by having a dash $(-)$ in column 1 of the statement line. The statement will not be executed unless it has been activated by an ACT statement (see ACT). Execution of SYNCH subroutines can be bypassed until needed by placing a dash in front of the CALL statement.

7.0 NON-LINEAR TRANSFORMATIONS

7.1 MAP - Point Transformations

The MAP subroutines all have the form $\operatorname{MAP} k(V, P A R)$ where:
k is an integer, $0 \leq k \leq 9$ for built-in subroutines, $10 \leq k \leq 19$ for user defined subroutines.
V is a 7 -dimensional particle state vector $\left(x, x^{\prime}, y, y^{\prime},-d s, d p / p, 1\right)$ on which transformations will be made. At the end of the routine, the transformed values will replace the original ones in the array V.
$P A R$ is an array containing parameters needed for the transformation. The dimension depends on the transformation. The input variable m in the MAP statement corresponds to the dimension of $P A R$.

As an example, consider the following non-linear transformation, which is included in the code as MAP0:

$$
\begin{aligned}
X & =x \\
X^{\prime} & =x^{\prime}-\left(3 A x^{2}+2 B x y+C y^{2}\right) \\
Y & =y \\
Y^{\prime} & =y^{\prime}-\left(B x^{2}+2 C x y+3 D y^{2}\right) \\
-d S & =-d s \\
d P / P & =d p / p \\
1 & =1
\end{aligned}
$$

where A, B, C, and D are four parameters associated with the transformation. The subroutine that accomplishes the above transformation follows:

```
    SUBROUTINE MAPO(V,PAR)
    DIMENSION V(7),W(7),PAR(4)
C Compute the transformed values...
W(1) = V(1)
W(2) = V(2) - (3.*PAR (1)*V(1)*V(1) + 2.*PAR(2)*V(1)*V(3)
1 + PAR(3)*V(3)*V(3) )
    W(3) = V(3)
    W(4) = V(4) - (PAR (2)*V(1)*V(1) + 2.*PAR (3)*V(1)*V(3)
1 + 3.*PAR(4)*V(3)*V(3) )
W(5) = V(5)
W(6) = V (6)
W(7) = V(7)
```

```
C Put transformed values in V array...
    DO 2 L=1,7
    2 V(L) = W(L)
    RETURN
    END
```

Having compiled and linked this routine, one includes the following statement in the SYNCH input file:

with appropriate values for A, B, C, and D, as well as beamline statements that reference XMPL. Initial values of the components of V are specified by a PVEC statement, which in turn is referenced by a command such as TRK or FXPT.

7.2 DEQ - Differential Equation Transformations

The DEQ subroutines all have the form $\operatorname{DEQ}(S, W, D W)$ where:
k is an integer, $0<k<10$ for built-in subroutines, $10<k<20$ for user defined subroutines.
S is the cumulative path length.
W is an array giving the state vectors of a set of particles.
$D W$ is an array giving increments to the particle state vectors W in one integration step.

An example is the following differential equation routine, which is included in the code as DEQ4. It is used to integrate envelopes of beams with space charge, as well as of single particles within such beams through drifts or quadrupoles.

```
    SUBROUTINE DEQ4(S,W,DW)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    COMMON/CDERIV/IFLAG ,MR,NR,DP ,NV (11) ,DAT(20),UZ ,STOT,
1 DAT2(7) ,MP2FLG ,NF ,HO ,LOCALF ,NUMALF ,NPR
    EQUIVALENCE (L,DAT(1)),(GRAD,DAT(2)),(BRHO,DAT(3)),
1 (EPS,DAT (4)),(Q,DAT(5))
    DIMENSION W(4,1),DW (4,1)
    DOUBLE PRECISION L,K,KX,KY,KBX,KBY
```

```
            IF (IFLAG) 1,1,2
    B BRHO = BRHO* (1+DP)
        K = GRAD/BRHO
        EPS2 = EPS*EPS
        RETURN
C ENVELOPE EQUATIONS
    2 AX=W (1,1)
        AY=W (3,1)
        AX3 =AX*AX*AX
        AY3=AY*AY*AY
        A=AX+AY
        EAX3=EPS2/AX3
        EAY3=EPS2/AY3
        QA=Q/A
        DW (1, 1) = W (2, 1)
        DW (3,1) = W (4,1)
        DW (2,1) =-K*AX + EAX3 + QA
        DW (4,1) = K*AY + EAY3 + QA
        GO TO (7, 3, 3,5), IFLAG
C LINEARIZED ENVELOPE EQUATIONS
    EAX4=3*EAX3/AX
        EAY4=3*EAY3/AY
        QA2=QA/A
        KBX=-K-EAX4-QA2
        KBY= K-EAY4-QA2
        DO 4 J=2,NR
        DW (1, J) = W (2,J)
        DW (3, J) = W (4, J)
        DW (2,J) = KBX*W (1,J) - QA2*W (3,J)
    | DW (4,J) = KBY*W (3,J) - QA2*W (1,J)
    7 RETURN
```

```
C SINGLE PARTICLE EQUATIONS
    LQAX=QA/AX
    QAY=QA/AY
    KX=-K+QAX
    KY= K+QAY
    DO 6 J=2,NR
    DW (1, J) = W (2, J)
    DW (3, J) = W (4, J)
    DW (2,J) = KX*W (1,J)
    6 DW (4,J) = KY*W (3,J)
    RETURN
    END
```

Note that the first 'particle' in this application is the beam envelope. To use this routine, one includes the following statement in the SYNCH input file:

where QSPCH is the name of the element, L and G are its length and gradient, $B R$ is the rigidity of the particles, EPS the beam emittance, Q a factor proportional to the beam current and DS is the integration step size. The quantities L and $D S$ are passed to the differential equation routine, and the other parameters to DEQ4 through the array DAT.

8.0 MATHEMATICAL FORMULATION

8.1 Transfer Matrices and Beamlines

The coordinate system employed by SYNCH is a curvilinear system of right-handed orthogonal coordinates $x-y-s$ where s is the longitudinal position along the reference orbit, x is the horizontal (radial) displacement from the reference orbit, and y is the vertical displacement from the reference orbit. The trajectory, or state of a particle in this coordinate system is represented by the vectors $X=\left(x, x^{\prime}, d p / p\right)$, and $Y=\left(y, y^{\prime}, d p / p\right)$, where $x^{\prime}=d x / d s, y^{\prime}=d y / d s$ and $d p / p$ is the momentum error with respect to the reference particle. Most accelerator or beamline elements can be represented by a pair of 3×3 transfer matrices R_{x} and R_{y} which act on the above particle state vectors:

$$
\begin{aligned}
X_{\text {out }} & =R_{x} X_{\text {in }} \\
Y_{\text {out }} & =R_{y} Y_{\text {in }}
\end{aligned}
$$

where the matrices are of the form

$$
R=\left[\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
\operatorname{det}(R)=1
$$

For some types of calculations one may wish to investigate coupling between horizontal and vertical motion. For these cases, a 7×7 matrix is used to describe each beamline element. This matrix, M, acts on the particle state vector $X=\left(x, x^{\prime}, y, y^{\prime},-d s, d p / p, 1\right)$:

$$
X_{\text {out }}=M X_{\text {in }} .
$$

The matrix M for a non-rotated magnet, for example, would be of the form

$$
M=\left[\begin{array}{ccccccc}
\left(R_{x}\right)_{11} & \left(R_{x}\right)_{12} & 0 & 0 & 0 & \left(R_{x}\right)_{13} & 0 \\
\left(R_{x}\right)_{21} & \left(R_{x}\right)_{22} & 0 & 0 & 0 & \left(R_{x}\right)_{23} & 0 \\
0 & 0 & \left(R_{y}\right)_{11} & \left(R_{y}\right)_{12} & 0 & \left(R_{y}\right)_{13} & 0 \\
0 & 0 & \left(R_{y}\right)_{21} & \left(R_{y}\right)_{22} & 0 & \left(R_{y}\right)_{23} & 0 \\
M_{51} & M_{52} & M_{53} & M_{54} & 1 & M_{56} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

(A 7×7 matrix is used in order to facilitate magnet misalignment calculations; see Section 8.8.) Bending magnets defined by MAG are assumed to bend the orbit in the horizontal plane. The matrix for a vertical bending magnet is defined by the MAGV command should be used to in effect perform 90° rotations of coordinates before entering and upon exiting the magnet. (See below.)

For simplicity the 3×3 matrix formulation is used in the following text to describe various types of elements. SYNCH usually stores matrices in this form, but expands them to 7×7 matrices before using them. For drifts, non-rotated magnets and other simple linear elements, SYNCH stores the first two rows of the horizontal and vertical 3×3 matrices R_{x} and R_{y}. For all matrices, including this kind, it stores in addition the length, the bending angle and the M_{56} matrix element: $L_{p}=-d L / d p=M_{56}$, which is the negative of the integral of $\left(R_{x}\right)_{13}$ with respect to the bending angle. L_{p} is zero except for bending magnets. Its expression is given below together with the analytic expressions for 3×3 matrices for the various types of bending magnets.

The first four elements of the 5 th row of the 7×7 matrices are calculated by SYNCH whenever it must obtain that matrix from the 3×3 matrices stored, by using the symplectic condition

$$
M^{t r} S M=S
$$

where $M^{t r}$ is the transpose of M and S is the symplectic matrix. If one equates the $61,62,63$ and 64 elements of the two sides of this equation, one finds that the 4 -element column vector $q=\left(M_{51}, M_{52}, M_{53}, M_{54}\right)$ is given by

$$
q=(-S M) p
$$

where here, S and M are upper left 4×4 submatrices, $p=\left(M_{16}, M_{26}, M_{36}, M_{46}\right)$, and

$$
-S M=\left[\begin{array}{llll}
M_{21} & -M_{11} & M_{41} & -M_{31} \\
M_{22} & -M_{12} & M_{42} & -M_{32} \\
M_{23} & -M_{13} & M_{43} & -M_{33} \\
M_{24} & -M_{14} & M_{44} & -M_{34}
\end{array}\right] .
$$

For an uncoupled matrix, we have $p=\left(\left(R_{x}\right)_{13},\left(R_{x}\right)_{23},\left(R_{y}\right)_{13},\left(R_{y}\right)_{23}\right)$, and

$$
-S M=\left[\begin{array}{cccc}
\left(R_{x}\right)_{21} & -\left(R_{x}\right)_{11} & 0 & 0 \\
\left(R_{x}\right)_{22} & -\left(R_{x}\right)_{12} & 0 & 0 \\
0 & 0 & \left(R_{y}\right)_{21} & -\left(R_{y}\right)_{22} \\
0 & 0 & \left(R_{y}\right)_{22} & -\left(R_{y}\right)_{12}
\end{array}\right] .
$$

Beamlines

A beamline is defined as a particular sequence of accelerator elements. These elements can include primitive ones such as drifts and magnets, compound elements represented by a single matrix, or other beamlines. Beamlines are defined in SYNCH by BML statements; compound elements, by MMM statements.

8.2 Linear Elements

Drift Region - length ℓ

$$
R_{x}=\left[\begin{array}{ccc}
1 & \ell & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad R_{y}=\left[\begin{array}{ccc}
1 & \ell & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Magnets

$$
\begin{array}{ll}
B^{\prime}=\left(d B_{y} / d R\right) & \text { at } R_{0} \\
B_{0}=\left(B_{y}\right) & \text { at } R_{0} \\
k=B^{\prime} / B_{0} &
\end{array}
$$

where R_{0} is the reference orbit and the radius of curvature, $\rho=(B \rho) / B_{0}$, the magnetic rigidity divided by the magnetic field of the bending magnet. (See Figure 1.) Then

$$
\begin{array}{ll}
k_{x}=k+1 / \rho & k_{y}=-k \\
K_{x}=\left|k_{x} / \rho\right| & K_{y}=\left|k_{y} / \rho\right| \\
\Phi_{x}=\sqrt{K_{x}} \ell & \Phi_{y}=\sqrt{K_{y}} \ell \\
\theta=\ell / \rho &
\end{array}
$$

Figure 1. Geometry Through Bending Magnet.

It is useful to separate the description of motion through a magnet into matrices describing the body field of the magnet and the edge effects. The transfer matrices R_{x} and R_{y} for motion through a magnet are then given by

$$
\begin{aligned}
R_{x} & =E_{2 x} T_{x} E_{1 x} \\
R_{y} & =E_{2 y} T_{y} E_{1 y}
\end{aligned}
$$

where the T-matrices describe the body of the magnet and the E-matrices, the edge-focusing effects. For wedge magnets the entrance and exit angles are zero, so the E-matrices are the identity and $R_{x}=T_{x} ; R_{y}=T_{y}$.

The T-matrices for various magnets and the E-matrices as calculated by $\mathbf{S Y N C H}$ are shown below.

Horizontally (Radially) Focusing Combined-Function Magnet:

$$
\begin{aligned}
& T_{x}=\left[\begin{array}{ccc}
\cos \Phi_{x} & \ell \frac{\sin \Phi_{x}}{\Phi_{x}} & \ell \theta \frac{1-\cos \Phi_{x}}{\Phi_{x}^{2}} \\
-\frac{\Phi_{x} \sin \Phi_{x}}{\ell} & \cos \Phi_{x} & \theta \frac{\sin \Phi_{x}}{\Phi_{x}} \\
0 & 0 & 1
\end{array}\right] \\
& T_{y}=\left[\begin{array}{ccc}
\cosh \Phi_{y} & \ell \frac{\sinh \Phi_{y}}{\Phi_{y}} & 0 \\
\frac{\Phi_{y} \sinh \Phi_{y}}{\ell} & \cosh \Phi_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& L_{p}=-\frac{\Phi_{x}-\sin \Phi_{x}}{\rho^{2} K_{x}^{3 / 2}}
\end{aligned}
$$

Vertically Focusing Combined-Function Magnet:

$$
\begin{aligned}
& T_{x}=\left[\begin{array}{ccc}
\cosh \Phi_{x} & \ell \frac{\sinh \Phi_{x}}{\Phi_{x}} & \ell \theta \frac{\cosh \Phi_{x}-1}{\Phi_{x}^{2}} \\
\frac{\Phi_{x} \sinh \Phi_{x}}{\ell} & \cosh \Phi_{x} & \theta \frac{\sinh \Phi_{x}}{\Phi_{x}} \\
0 & 0 & 1
\end{array}\right] \\
& T_{y}=\left[\begin{array}{ccc}
\cos \Phi_{y} & \ell \frac{\sin \Phi_{y}}{\Phi_{y}} & 0 \\
-\frac{\Phi_{y} \sin \Phi_{y}}{\ell} & \cos \Phi_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& L_{p}=-\frac{\sinh \Phi_{x}-\Phi_{x}}{\rho^{2} K_{x}^{3 / 2}}
\end{aligned}
$$

Zero Gradient Bending Magnet ($k=0$):

$$
\begin{aligned}
& T_{x}=\left[\begin{array}{ccc}
\cos \theta & \ell \frac{\sin \theta}{\theta} & \ell \frac{1-\cos \theta}{\theta} \\
-\frac{\theta \sin \theta}{\ell} & \cos \theta & \sin \theta \\
0 & 0 & 1
\end{array}\right] \\
& T_{y}=\left[\begin{array}{ccc}
1 & \ell & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& L_{p}=-\ell\left(1-\frac{\sin \theta}{\theta}\right) .
\end{aligned}
$$

Rectangular Bending Magnets:

The transfer matrices for a rectangular bending magnet are constructed using the T-matrices for a horizontally bending wedge magnet and edge matrices corresponding to $e_{1}=e_{2}=\theta / 2$. See Figure 1.

Horizontally (radially) Focusing Quadrupole Magnet:

$$
\begin{aligned}
& T_{x}=\left[\begin{array}{ccc}
\cos \Phi_{x} & \frac{1}{\sqrt{K_{x}}} \sin \Phi_{x} & 0 \\
-\sqrt{K_{x}} \sin \Phi_{x} & \cos \Phi_{x} & 0 \\
0 & 0 & 1
\end{array}\right] . \\
& T_{y}=\left[\begin{array}{ccc}
\cosh \Phi_{y} & \frac{1}{\sqrt{K_{y}}} \sinh \Phi_{y} & 0 \\
\sqrt{K_{y}} \sinh \Phi_{y} & \cosh \Phi_{y} & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Vertically Focusing Quadrupole Magnet:

$$
\begin{aligned}
& T_{x}=\left[\begin{array}{ccc}
\cosh \Phi_{x} & \frac{1}{\sqrt{K_{x}}} \sinh \Phi_{x} & 0 \\
\sqrt{K_{x}} \sinh \Phi_{x} & \cosh \Phi_{x} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& T_{y}=\left[\begin{array}{ccc}
\cos \Phi_{y} & \frac{1}{\sqrt{K_{y}}} \sin \Phi_{y} & 0 \\
-\sqrt{K_{y}} \sin \Phi_{y} & \cos \Phi_{y} & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Edge Focusing Matrices:

$$
\begin{aligned}
& E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\pm \frac{1}{\rho} \tan e_{1} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\pm \frac{1}{\rho} \tan e_{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
\end{aligned}
$$

where + is used for $x,-$ is used for y.

Rotated Magnet:

The matrix for a rotated magnet is obtained by altering the coordinate system by a rotational transformation. To perform this calculation, 7×7 matrices are used. In the 7×7 mode, a rotation of the coordinates of θ radians about the s-axis is represented by

$$
R_{\theta}=\left[\begin{array}{ccccccc}
\cos \theta & 0 & \sin \theta & 0 & 0 & 0 & 0 \\
0 & \cos \theta & 0 & \sin \theta & 0 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 & 0 & 0 & 0 \\
0 & -\sin \theta & 0 & \cos \theta & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0^{6} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

If R_{θ} represents a rotation θ and $R_{-\theta}$ represents a rotation $-\theta$ then the transfer matrix of a rotated magnet is given by $M=R_{-\theta} M_{0} R_{\theta}$, where M_{0} is the original magnet matrix. Thus, a vertically bending magnet would be represented by the matrix

$$
M_{v}=R_{-\pi / 2} M_{0} R_{\pi / 2} .
$$

Any previously defined beamline element (including those defined by MMM and REF commands) may be rotated in this fashion by using the ROT command. A rotation matrix R_{θ} may be defined using ROTZ.

Kicker Magnet:

The effect of the KICK command is to introduce a delta-function kick in the center of a previously defined zero-length drift region, or produce a field error in a previously defined magnet. If the element was defined as a zero-length drift, then the specified slope (x^{\prime} or y^{\prime}) will be changed by the amount θ. The corresponding matrix (shown here for vertical deflection) would be

$$
R=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -\theta & \theta \\
0 & 0 & \theta & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

If the original element was a magnet, then the KICK statement will alter the transfer matrix to represent a magnet with a field error of $d B / B$. This is accomplished by changing the matrix elements $R_{17}=0$ to $R_{17}=\left(\ell^{2} / 2 \rho\right)(d B / B)$ and $R_{27}=0$ to $R_{27}=(\ell / \rho)(d B / B)$.

On the other hand, if the element was previously defined as a drift region of length ℓ, then the KICK statement turns the drift into a bending (zero-gradient dipole) magnet, neglecting any edge focusing. The transfer matrix for this new element is

$$
R=\left[\begin{array}{ccccccc}
1 & \ell & 0 & 0 & 0 & \ell \theta / 2 & -\ell \theta / 2 \\
0 & 1 & 0 & 0 & 0 & \theta & -\theta \\
0 & 0 & 1 & \ell & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-\theta & -\ell \theta / 2 & 0 & 0 & 1 & \ell \theta^{2} / 3 & -\ell \theta^{2} / 6 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { (horizontal kick) }
$$

or

$$
R=\left[\begin{array}{ccccccc}
1 & \ell & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & \ell & 0 & -\ell \theta / 2 & \ell \theta / 2 \\
0 & 0 & 0 & 1 & 0 & -\theta & \theta \\
0 & 0 & \theta & \ell \theta / 2 & 1 & \ell \theta^{2} / 3 & -\ell \theta^{2} / 6 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { (vertical kick). }
$$

8.3 Multipole Magnets

Sextupole Magnet:

The effect of a sextupole on the reference ray V is to replace x^{\prime} and y^{\prime} with $x^{\prime}-P$ and $y^{\prime}+Q$, where

$$
V=\left(x, x^{\prime}, y, y^{\prime}, d s, d p / p, 1\right)
$$

and

$$
\begin{aligned}
P & =\bar{S}\left(x^{2}-y^{2}\right) / 2 \\
Q & =\bar{S} x y \\
\bar{S} & =S /(1+d p / p) \\
S & =\ell B^{\prime \prime} / B \rho .
\end{aligned}
$$

The effect of the sextupole on rays near the reference ray, V, is given by the following 7×7 matrix:

$$
T=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\bar{S} x & 1 & \bar{S} y & 0 & 0 & P & P \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\bar{S} y & 0 & \bar{S} x & 1 & 0 & -Q & -Q \\
-P & 0 & Q & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

N-Pole Magnet:

The effect of a thin-lens multipole kick of m-th order can be accommodated by SYNCH using the NPOL statement. The user enters the order of the multipole, m, the effective length of the element, L, and its Taylor series expansion coefficient, b_{n}, where $m=n-1$. The magnetic field is then given by

$$
B=B_{y}+i B_{x}=\binom{1}{i} \frac{b_{n}}{n!} z^{n}, \quad \text { for }\binom{\text { normal }}{\text { skew }} \text { fields, }
$$

where $z=x+i y$. A particle being tracked through such an element is then subject to this field over the distance ℓ.

Solenoid Magnet:

A solenoid magnet has the following transfer matrix:

$$
R=\left[\begin{array}{ccccccc}
c^{2} & 2 \rho s c & s c & 2 \rho s^{2} & 0 & 0 & 0 \\
-s c / 2 \rho & c^{2} & -s^{2} / 2 \rho & s c & 0 & 0 & 0 \\
-s c & -2 \rho s^{2} & c^{2} & 2 \rho s c & 0 & 0 & 0 \\
s^{2} / 2 \rho & -s c & -s c / 2 \rho & c^{2} & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

where, with $B=$ solenoid field, $l=$ its length, $B \rho=$ particle rigidity,

$$
\begin{aligned}
\rho & =B \rho / B \\
\theta & =l / \rho \\
c & =\cos \theta / 2 \\
s & =\sin \theta / 2
\end{aligned}
$$

Note that ρ is the radius of curvature in a dipole field B.

8.4 Betatron Functions and Dispersion

Consider a beamline representing an accelerator (or a part of one) made up of p identical periodic sections. Each section is composed of N elements, each represented by a 2×2 transfer matrix, $R(i)$. The matrix M_{0} corresponding to one passage through a period (neglecting coupling) is given by

$$
M_{0}=R(N) R(N-1) R(N-2) \ldots R(2) R(1) .
$$

Here, the matrices are taken to act on the vectors $\left(x, x^{\prime}\right)$ or $\left(y, y^{\prime}\right)$. These matrices are submatrices of the corresponding 3×3 matrices used earlier in this section. The elements of these submatrices may be parameterized as follows:

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)
$$

where $\alpha, \beta, \gamma=\left(1+\alpha^{2}\right) / \beta$, and μ are the betatron functions as defined by Courant and Snyder. ${ }^{[4]}$ Thus, the values of the betatron functions at point 0 of the accelerator (i.e., at the entrance to element 1 , exit of element N) are given by

$$
\begin{aligned}
\mu & =\arccos [(a+d) / 2] \\
\beta & =b / \sin \mu \\
\alpha & =(a-d) /(2 \sin \mu)
\end{aligned}
$$

The parameter μ represents the phase advance of the betatron oscillation for one passage through the period and can be denoted as $\mu=2 \pi \nu / p$, where p is the number of periods in the machine and ν is the tune of the accelerator. The amplitude of the betatron oscillation is proportional to $\sqrt{\beta}$. The slope of the function β is given by $d \beta / d s=-2 \alpha$. The betatron oscillations which a particle undergoes while traversing the accelerator may be expressed as

$$
\begin{aligned}
x(s) & =A_{x} \sqrt{\beta_{x}(s)} \cos \left[\psi_{x}(s)+\phi_{x}\right] \\
y(s) & =A_{y} \sqrt{\beta_{y}(s)} \cos \left[\psi_{y}(s)+\phi_{y}\right]
\end{aligned}
$$

where A_{x}, A_{y}, ϕ_{x}, and ϕ_{y} are arbitrary constants, and $\psi_{x}(s), \psi_{y}(s)$ are the horizontal and vertical phase advances of the betatron oscillations from the arbitrary $s=0$ point in the accelerator.

To calculate the values of α, β, and ψ for all points in the machine, SYNCH computes the matrices representing a single pass through a period starting at the end of each element. Once the single-pass transfer matrix, M_{0}, for point 0 has been found, the values of $\beta(i)$ and $\alpha(i)$ at the end of the i-th element can be found from the matrix

$$
M_{i}=R(i) M_{i-1} R^{-1}(i), \quad i=1,2, \ldots, N .
$$

Here, $R(i)$ is the transfer matrix for element i. The phase advance through the i-th element is given by

$$
\mu(i)=\arctan \left\{R_{12}(i) /\left[\beta(i-1) R_{11}(i)-\alpha(i-1) R_{12}(i)\right]\right\}
$$

and the phase advance from point 0 to the end of the i-th element is given by

$$
\psi(i)=\sum_{k=1}^{i} \mu(k) .
$$

The tunes of the accelerator are given by $\nu_{x}=p \psi_{x} / 2 \pi, \nu_{y}=p \psi_{y} / 2 \pi$ where ψ_{x} and ψ_{y} are the phase advances through a full period.

The third row and column of each 3×3 transfer matrix is used to compute the closed orbit for an off-momentum particle. If M is the matrix for one complete revolution (i.e., through p periods), then the particle state vector $X_{e q}=\left(x, x^{\prime}, d p / p\right)$ representing a closed orbit must satisfy $X_{e q}=M X_{e q}$, from which

$$
X_{e q}=\left(\begin{array}{c}
\left(M_{13}+M_{13}^{-1}\right) /\left(2-M_{11}-M_{22}\right) \\
\left(M_{23}+M_{23}^{-1}\right) /\left(2-M_{11}-M_{22}\right) \\
1
\end{array}\right)
$$

The dispersion function, $\eta(s)$, is given by

$$
\begin{array}{ll}
X_{e q}=(d p / p) \eta_{x} & Y_{e q}=(d p / p) \eta_{y} \\
X_{e q}^{\prime}=(d p / p) \eta_{x}^{\prime} & Y_{e q}^{\prime}=(d p / p) \eta_{y}^{\prime}
\end{array} .
$$

Thus,

$$
\begin{aligned}
\eta & =\left(M_{13}+M_{13}^{-1}\right) /\left(2-M_{11}-M_{22}\right) \\
\eta^{\prime} & =\left(M_{23}+M_{23}^{-1}\right) /\left(2-M_{11}-M_{22}\right) .
\end{aligned}
$$

Hence, the dispersion function can be calculated at the end of each element in the accelerator using the 3×3 matrices corresponding to the matrices M_{i} described earlier.

It must be stressed that in the above treatment of betatron function calculations, coupling between horizontal and vertical motion has been completely ignored. This is true for most SYNCH computations of β and α functions. However, accurate values for the machine tunes and dispersion functions may be obtained by using 7×7 matrices and performing a FXPT calculation. This is discussed under "Closed Orbit Calculations" later in this section.

Other machine parameters calculated by SYNCH are the transition energy and the natural chromaticities. The transition energy is that energy of the particle beam for which the period of revolution about the machine is independent of particle momentum. This energy is given by $E=\gamma_{t} m_{0}$, where m_{0} is the rest mass of the orbiting particles. The parameter γ_{t}, called the transition gamma, is found from the relationship

$$
\gamma_{t}=1 / \sqrt{\alpha}
$$

where α represents, for this discussion only, the momentum compaction factor

$$
\alpha=(d C / C) /(d p / p), \quad C=\text { the machine's circumference } .
$$

By tracking the vector $\left(\eta_{x}, \eta_{x}^{\prime}, \eta_{y}, \eta_{y}^{\prime}, 0,1,0\right)$ through a superperiod of ideal length S_{0}, where η represents the momentum dispersion function, the change in path length, ΔS, for a particle with $d p / p=1$ can be found. The resulting vector at the end of the superperiod will be $\left(\eta_{x}, \eta_{x}^{\prime}, \eta_{y}, \eta_{y}^{\prime},-\Delta S, 1,0\right)$. Hence, the value of the transition gamma will be given by

$$
\gamma_{t}=\sqrt{S_{0} / \Delta S}
$$

Since it can occur that $\alpha<0$, the complex root of γ_{t}^{2} is taken. This root is displayed at the end of the CYC output.

Chromaticity is defined, in either the horizontal or vertical plane, as the change in the tune of the accelerator per unit change in $d p / p$. It can be shown ${ }^{[4]}$ that the tune change, $\Delta \nu$, due to errors, k, in the field gradient function $K=B^{\prime} / B \rho$ (i.e., $K=K_{0}+k$), is given by

$$
\Delta \nu=\frac{1}{4 \pi} \int k \beta d s
$$

If $K=K_{0}(1-d p / p)$, then the chromaticity can be written as

$$
\xi_{Q}=-\frac{1}{4 \pi} \int K \beta d s \quad \text { (due to quadrupoles). }
$$

Likewise, an expression for the chromaticity due to sextupoles can be obtained:

$$
\xi_{S}=\frac{1}{4 \pi} \int K^{\prime} \eta \beta d s \quad \text { (due to sextupoles). }
$$

In a similar fashion, chromatic effects due to the edge focusing of the bending magnets can be taken into account. SYNCH calculates the total machine chromaticity due to these three effects and displays the result at the end of the CYC output. The chromaticities computed are due only to magnets which are explicitly listed in the beamline used in the CYC statement.

Another method for studying chromatic properties is to perform an FXPT calculation for various values of $d p / p$ and look at the behavior of the total machine tunes.

Tracking Betatron Functions Through a Beamline

The 2×2 matrix M representing passage through one periodic section of the accelerator may be written as

$$
M=I \cos \mu+J \sin \mu
$$

where I is the identity matrix, and J is given by

$$
J=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) .
$$

Let R represent the transfer matrix from point 0 to point 1 , J_{0} the above matrix with betatron functions evaluated at point 0 , and J the above matrix with betatron functions evaluated at point 1 . Then the two J-matrices are related by

$$
J=R J_{0} R^{-1}
$$

If R has the matrix elements

$$
R=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),
$$

then the betatron functions at point 1 in terms of the betatron functions at point 0 are given by the relations

$$
\begin{aligned}
\alpha_{1} & =(a d+b c) \alpha_{0}-a c \beta_{0}-b d \gamma_{0} \\
\beta_{1} & =a^{2} \beta_{0}-2 a b \alpha_{0}+b^{2} \gamma_{0} \\
\gamma_{1} & =d^{2} \gamma_{0}-2 c d \alpha_{0}+c^{2} \beta_{0} \\
\psi_{1} & =\psi_{0}+\arctan \left\{b /\left[a \beta_{0}-b \alpha_{0}\right]\right\} .
\end{aligned}
$$

Using these relationships, the betatron functions can be tracked through a beamline given their initial values.

Dispersion functions are tracked through a beamline using the relations

$$
\begin{aligned}
& \eta_{1}=a \eta_{0}+b \eta_{0}^{\prime}+e \\
& \eta_{1}^{\prime}=c \eta_{0}+d \eta_{0}^{\prime}+f
\end{aligned}
$$

where e and f are the 1-3 and 2-3 elements of the 3×3 transfer matrices.

8.5 Particle Beam Envelopes

Particle beam envelopes are calculated by SYNCH using betatron functions computed by the program and beam emittances specified by the user. The beam emittance is defined as the area of the $x x^{\prime}$ (or $y y^{\prime}$) phase space ellipse which contains some certain fraction of the beam (95%, say). The user may enter his/her own favorite value of the beam emittance for the machine in question. If β, α and γ are the betatron functions at a particular longitudinal location in the accelerator, then the phase space ellipse representing the beam at that point will have the form shown in the figure below:

Figure 2. Phase Space Ellipse.

Here, the area is represented by $\pi \epsilon$, where ϵ is the beam emittance. The beam size, σ, as measured from the reference orbit, is thus given by

$$
\sigma=\sqrt{\epsilon \beta} .
$$

If the beam has an average momentum error of $d p / p$, then this ellipse will be translated along the x-axis by an amount $\eta(d p / p)$ and translated along the x^{\prime}-axis by an amount $\eta^{\prime}(d p / p) . \eta$ and η^{\prime} are the dispersion function and its slope. The closed orbit may not lie on the reference orbit if magnet misalignments and errors are taken into account, and so the beam ellipse may be displaced even further. The total beam envelope displayed by the CYAE command is given either by

$$
\begin{aligned}
\sigma & =\sqrt{\epsilon \beta}\left[1+\sqrt{\epsilon_{c o} / \epsilon}\right]+|\eta d p / p| \\
\sigma^{\prime} & =\sqrt{\epsilon \gamma}\left[1+\sqrt{\epsilon_{c o} / \epsilon}\right]+\left|\eta^{\prime} d p / p\right|
\end{aligned}
$$

or by

$$
\begin{aligned}
\sigma & =\sqrt{\epsilon \beta+(\eta d p / p)^{2}}+\sqrt{\epsilon_{c o} \beta} \\
\sigma^{\prime} & =\sqrt{\epsilon \gamma+\left(\eta^{\prime} d p / p\right)^{2}}+\sqrt{\epsilon_{c o} \gamma}
\end{aligned}
$$

depending upon the option chosen. Here, $\epsilon_{c o}$ is the equivalent emittance representing the closed orbit:

$$
\epsilon_{c o}=\left(X_{c o}\right)^{2} / \beta .
$$

The calculation is performed for both planes.
For electron machines, the CYEM statement may be used to calculate beam emittances, rf integrals, etc. For these calculations, SYNCH follows the conventions of Morton. ${ }^{[5]}$

8.6 Closed Orbit Calculations

To calculate the closed orbit around an accelerator composed of various linear and non-linear elements, SYNCH begins by tracking an initial "first guess" particle state vector through one complete revolution. This initial vector will be denoted as V_{0}, while the particle state vector after one revolution will be called V_{1}. Next, all of the transfer matrices of the accelerator elements are linearized about this initial single-turn trajectory, generating new transfer matrices, R. For details of how the various element matrices are modified on this step, the reader is referred to [3].

One may now track a particle vector, X, in the neighborhood of V (i.e., $X=V+Z$, where $Z \ll V)$ around the machine. Let Z_{0} be the initial difference vector, $Z_{0}=X_{0}-V_{0}$, which is input by the user. After one revolution, the vector $Z_{1}=X_{1}-V_{1}$ will be given by $Z_{1}=T Z_{0}$, where T is the linearized single-turn transfer matrix found by $T=R_{N} R_{N-1} \ldots R_{2} R_{1}$.

For the trajectory to be a closed orbit,

$$
X_{1}=V_{1}+Z_{1}=X_{0}=V_{0}+Z_{0}
$$

or,

$$
X_{0}=V_{1}+T Z_{0}=V_{1}+T\left(X_{0}-V_{0}\right)
$$

or,

$$
X_{0}=-(T+I)^{-1}\left(V_{1}-V\right)=X_{e q}
$$

where I is the identity matrix. Hence, the vector $X_{e q}$ may be used as a new "best guess" V_{0} for the closed orbit and the entire operation described above may be repeated n times until $\mid X_{e q}(n)-$ $X_{e q}(n-1) \mid=Z_{0}(n)$ is less than some tolerance.

Once the final vector $X_{e q}$ is found, the closed orbit throughout the machine is given by the last tracking of the particle. Also, the betatron functions about this closed orbit may be extracted from the matrices T and R_{i} in the manner described earlier in this section. Again, the computations of β and α functions ignore coupling between horizontal and vertical motion.

Generalized momentum dispersion functions may also be extracted from T and R_{i}, since $T D=$ D, where $D=\left(x, x^{\prime}, y, y^{\prime}, 0,1,1\right)$. This computation of D gives the change in the closed orbit from $X_{e q}$ per unit $d p / p$.

The program also calculates eigenvalues and eigenvectors of the 4×4 submatrix M, the singleturn matrix which operates on $\left(x, x^{\prime}, y, y^{\prime}\right)$. The eigenvalues and eigenvectors will contain any coupling information and hence will provide the user with accurate values for the "eigen" tunes of the machine. The eigenvectors may be tracked around the accelerator as an output option of the FXPT statement.

8.7 Particle Tracking

The procedure for particle tracking with the SYNCH program is rather straightforward. The options allowed by the TRK command allows one to track a particle through a beamline consisting only of linear elements, or to track a particle through a beamline consisting of linear and nonlinear elements. In the first case, the single-turn transfer matrix corresponding to the location of interest is computed and used in the calculation. In the second case, the trajectory of the particle through each individual sub-beamline (previously defined BML or MMM) and non-linear element obviously must be computed upon every passage.

8.8 Magnet Misalignment Calculations

SYNCH provides two methods of generating magnet misalignments. One method employs the MAGS command in conjunction with the BMIS, EMIS and SHF commands. In this procedure, the user may specify transverse misalignments but not rotations about the s-axis. If this method is used, the orbit distortions brought about by the misalignments are shown in the CYC output in the columns which usually contain the momentum dispersion functions. The second method employs the MOVE command. This method allows for both x and y translations as well as rotational misalignments about the s-axis. In this procedure, the FXPT statement is used to compute the new closed orbit of the machine.

The MAGS procedure was developed first. The MOVE procedure, developed subsequently, is more commonly used today.

The MAGS Method

One way to perform magnet misalignment calculations is to think of the element matrices as acting on the particle state vectors $\left(x, x^{\prime}, 1\right)$ or $\left(y, y^{\prime}, 1\right)$. One sees from Figure 3 that the coordinates relative to the element's centerline must be transformed in the following manner when entering or exiting a misaligned element.

At entrance to the misaligned element:

$$
x \rightarrow x-a ; x^{\prime} \rightarrow x^{\prime}-\theta .
$$

At exit from the misaligned element:

$$
x \rightarrow x+b ; x^{\prime} \rightarrow x^{\prime}+\theta .
$$

Figure 3. Misaligned Magnet.

Thus, if the coordinates are transformed upon entrance to and exit from the magnet by the "shift" matrices

$$
S_{i}=\left[\begin{array}{ccc}
1 & 0 & -a \\
0 & 1 & -\theta \\
0 & 0 & 1
\end{array}\right], S_{o}=\left[\begin{array}{ccc}
1 & 0 & b \\
0 & 1 & \theta \\
0 & 0 & 1
\end{array}\right]
$$

then the transfer matrix for the misaligned magnet is given by $M=S_{o} M_{o} S_{i}$, where M_{o} is the original 3×3 matrix representing the aligned magnet with $M_{o}(1,3)$ and $M_{o}(2,3)$ set to zero.

In this manner, the same procedure used to calculate the closed orbit for an off-momentum particle in an aligned accelerator may be followed to calculate the closed orbit in the misaligned accelerator. Hence, CYC is used.

The MOVE Method

The other procedure for studying the effects of misaligned elements is to invoke the MOVE and SHF7 commands and calculate the new closed orbit using FXPT. This method requires the use of 7×7 matrices and allows the study of horizontal and vertical coupling. The seventh column of these matrices is the analog of the third column in the BMIS method. Again, shift matrices are employed as well as rotation matrices to handle rotations about the s-axis. The appropriate 7×7 shift matrices are of the form

$$
S_{i}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & -a_{x} \\
0 & 1 & 0 & 0 & 0 & 0 & -\theta_{x} \\
0 & 0 & 1 & 0 & 0 & 0 & -a_{y} \\
0 & 0 & 0 & 1 & 0 & 0 & -\theta_{y} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad S_{o}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & b_{x} \\
0 & 1 & 0 & 0 & 0 & 0 & \theta_{x} \\
0 & 0 & 1 & 0 & 0 & 0 & b_{y} \\
0 & 0 & 0 & 1 & 0 & 0 & \theta_{y} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

8.9 Parameterization of Transport and Period Matrices with X-Y Coupling

A parameterization of 4×4 matrices describing linear beam transport systems has been obtained by Edwards and Teng. ${ }^{[10]}$ Here we extend their formalism ${ }^{[12]}$ to include dispersive effects, and give prescriptions for incorporating it in the program SYNCH. A period of a beam transport system, or an element or segment of such a system (periodic or not) is characterized by a 6×6 transfer matrix, which we write in the form

$$
\mathbf{T}=\left(\begin{array}{ccc}
\mathbf{M} & \mathbf{n} & \mathbf{d}_{1} \tag{1}\\
\mathbf{m} & \mathbf{N} & \mathbf{d}_{2} \\
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{F}
\end{array}\right)
$$

Here we have written the 6×6 matrix \mathbf{T} in terms of 2×2 submatrices \mathbf{M}, m, etc. The dynamic variables are taken to be $x, x^{\prime} \equiv d x / d s, y, y^{\prime},-\Delta s, \Delta p / p$, in that order. We consider only transport systems without acceleration or damping; then the elements in the fifth column and sixth row of \mathbf{T} vanish except for $T_{55}=T_{66}=1$, and the matrix \mathbf{T} is symplectic, which means that the inverse of \mathbf{T} is given by

$$
\mathbf{T}^{-1}=\overline{\mathbf{T}} \equiv\left(\begin{array}{ccc}
\overline{\mathbf{M}} & \overline{\mathbf{m}} & \overline{\mathbf{e}}_{1} \tag{2}\\
\overline{\mathbf{n}} & \overline{\mathbf{N}} & \overline{\mathbf{e}}_{2} \\
\overline{\mathbf{d}}_{1} & \overline{\mathbf{d}}_{2} & \overline{\mathbf{F}}
\end{array}\right)
$$

where the "symplectic conjugate" $\overline{\mathbf{a}}$ of any 2×2 matrix \mathbf{a} is defined as

$$
\overline{\mathbf{a}} \equiv\left(\begin{array}{cc}
a_{22} & -a_{12} \tag{3}\\
-a_{21} & a_{11}
\end{array}\right)
$$

and the symplectic conjugate of a 4×4 or 6×6 matrix is defined by (2).

Parameterization of 4×4 Matrices for a Complete Period

When \mathbf{T} is a matrix describing a complete period (a circular accelerator or storage ring, or a cell of a periodic system), Edwards and Teng find a similarity transformation that transforms the $x-y 4 \times 4$ submatrix of \mathbf{T} (which we also designate by \mathbf{T}) into uncoupled form:

$$
\mathbf{T}=\mathbf{R} \mathbf{U} \overline{\mathbf{R}} \quad \text { with } \quad \mathbf{U}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{0} \tag{4}\\
\mathbf{0} & \mathbf{B}
\end{array}\right)
$$

where \mathbf{R} has the form

$$
\mathbf{R}=\left(\begin{array}{cc}
\mathbf{I} \cos \varphi & \overline{\mathbf{D}} \sin \varphi \tag{5}\\
-\mathbf{D} \sin \varphi & \mathbf{I} \cos \varphi
\end{array}\right)
$$

and \mathbf{A}, \mathbf{B} and \mathbf{D} are 2×2 unimodular (symplectic) matrices, \mathbf{I} and $\mathbf{0}$ are the 2×2 unit and null matrices, and φ is an equivalent rotation angle. The eigenvalues of \mathbf{T} and the matrix \mathbf{D} and the angle φ are determined as follows: ${ }^{[4]}$ Eigenvalues are $\exp \left(\pm i \mu_{1}\right), \exp \left(\pm i \mu_{2}\right)$, where μ_{1} and μ_{2} are the phase advances of the normal modes, with

$$
\begin{equation*}
\cos \mu_{1}+\cos \mu_{2}=\operatorname{Tr} \mathbf{T} / 2=\operatorname{Tr}(\mathbf{M}+\mathbf{N}) / 2 \tag{6}
\end{equation*}
$$

Define

$$
\begin{equation*}
t=\operatorname{Tr}(\mathbf{M}-\mathbf{N}) / 2 ; \quad \Delta=\operatorname{det}(\mathbf{m}+\overline{\mathbf{n}}) ; \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\cos \mu_{1}-\cos \mu_{2}=\delta \equiv t \sqrt{1+\Delta / t^{2}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{D}=-\frac{\mathbf{m}+\overline{\mathbf{n}}}{\sqrt{\Delta}} ; \quad \mathbf{D} \sin \varphi=-\frac{\mathbf{m}+\overline{\mathbf{n}}}{\sqrt{2 \delta(\delta+t)}} ; \tag{9}
\end{equation*}
$$

with

$$
\cos \varphi=\sqrt{\frac{\delta+t}{2 \delta}} ; \quad \sin \varphi=\sqrt{\frac{\delta-t}{2 \delta}}
$$

We confine ourselves to the case where the phase advances are real, i.e. the motion is stable; then $\Delta+t^{2}$ has to be positive so that δ is real. Note that we resolve the ambiguity of the sign of square roots by requiring δ to have the same sign as t. (If Δ is negative then $\sin \varphi$ and \mathbf{D} are imaginary, but $\mathbf{D} \sin \varphi$ is still real, which is all that really matters). In [10] it is shown that the transfer matrices Aand B for the uncoupled normal modes are given by

$$
\begin{equation*}
\mathbf{A}=\mathbf{M}+\frac{\mathbf{n}(\mathbf{m}+\overline{\mathbf{n}})}{\delta+t} ; \quad \mathbf{B}=\mathbf{N}-\frac{\mathbf{m}(\mathbf{n}+\overline{\mathbf{m}})}{\delta+t} . \tag{10}
\end{equation*}
$$

These are 2×2 unimodular matrices, and can be parameterized in terms of phase advances and Twiss (Courant-Snyder) parameters in the usual way:

$$
\begin{align*}
\mathbf{A} & =\left(\begin{array}{cc}
\cos \mu_{x}+\alpha_{x} \sin \mu_{x} & \beta_{x} \sin \mu_{x} \\
-\gamma_{x} \sin \mu_{x} & \cos \mu_{x}-\alpha_{x} \sin \mu_{x}
\end{array}\right) \tag{11}\\
\mathbf{B} & =\left(\begin{array}{cc}
\cos \mu_{y}+\alpha_{y} \sin \mu_{y} & \beta_{y} \sin \mu_{y} \\
-\gamma_{y} \sin \mu_{y} & \cos \mu_{y}-\alpha_{y} \sin \mu_{y}
\end{array}\right) . \tag{12}
\end{align*}
$$

The parameters α, β, γ, and μ in (11) and (12) may be taken as the definitions of the generalized Twiss parameters of the matrix \mathbf{T}.

Parameterization of Elements of a Periodic System

The parameterization just found applies to the matrix for a complete period. It does not apply to the individual elements or components of the period, since when the beam traverses an element the α and β functions are generally different at the beginning and the end.

Consider a periodic system \mathbf{G}. The matrix elements of \mathbf{G} are periodic in s, as are the parameters α, β, γ. At each azimuth s the parameters can be determined as detailed above. Now suppose the matrix for going from azimuth s_{1} to s_{2} is \mathbf{T}, so that

$$
\begin{equation*}
\mathbf{G}_{2}=\mathbf{T G}_{1} \overline{\mathbf{T}} . \tag{13}
\end{equation*}
$$

We reduce \mathbf{G}_{1} and \mathbf{G}_{2} to semi-diagonal form by the methods of the previous section:

$$
\begin{equation*}
\mathbf{G}_{1}=\mathbf{R}_{1} \mathbf{U} \overline{\mathbf{R}}_{1} ; \quad \mathbf{G}_{2}=\mathbf{R}_{2} \mathbf{U} \overline{\mathbf{R}}_{2} \tag{14}
\end{equation*}
$$

Then \mathbf{T} may be written as

$$
\begin{equation*}
\mathbf{T}=\mathbf{R}_{2} \mathbf{V} \overline{\mathbf{R}}_{1} \tag{15}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathbf{V}=\overline{\mathbf{R}}_{2} \mathbf{T R} \mathbf{R}_{1} \tag{16}
\end{equation*}
$$

which, with (13) and (14), gives

$$
\mathbf{U}_{2}=\mathbf{V} \mathbf{U}_{1} \overline{\mathbf{V}}
$$

or

$$
\begin{equation*}
\mathbf{U}_{2} \mathbf{V}=\mathbf{V} \mathbf{U}_{1} \tag{17}
\end{equation*}
$$

Since \mathbf{U}_{1} and \mathbf{U}_{2} are semi-diagonal, so is \mathbf{V}, i.e. \mathbf{V} may be regarded as the semi-diagonalization of the component matrix \mathbf{T} in the context of \mathbf{T} as an element of \mathbf{G}.

To find \mathbf{V} explicitly we write \mathbf{R}_{1} and \mathbf{R}_{2} in the form (5), and use (15) in the form $\mathbf{R}_{2} \mathbf{V}=\mathbf{T} \mathbf{R}_{1}$ with \mathbf{T} in the form (1):

$$
\begin{gather*}
\mathbf{A} \cos \varphi_{2}=\mathbf{M} \cos \varphi_{1}-\mathbf{n} \mathbf{D}_{1} \sin \varphi \tag{18a}\\
\mathbf{B} \cos \varphi_{2}=\mathbf{N} \cos \varphi_{1}+\mathbf{m} \overline{\mathbf{D}}_{1} \sin \varphi_{1} \tag{18b}
\end{gather*}
$$

Thus the element matrix \mathbf{T} is semi-diagonalized, with the help of the semi-diagonalization parameters of \mathbf{G}_{1} and \mathbf{G}_{2}.

For computational purposes it would be preferable if one did not first have to carry out the procedure for both the matrices \mathbf{G}_{1} and \mathbf{G}_{2}. In fact the explicit computation of $\cos \varphi_{2}$ can be avoided: We note that the uncoupled matrices \mathbf{A} and \mathbf{B} must be unimodular.Therefore we may simply compute the right-hand sides of (18), and then normalize by dividing by the square root of the determinant of the resulting matrices. Using (9) we have

$$
\begin{equation*}
\mathbf{M} \cos \varphi_{1}-\mathbf{n D}_{1} \sin \varphi_{1}=\left[\mathbf{M}+\frac{\mathbf{n}\left(\mathbf{m}_{1}+\overline{\mathbf{n}}_{1}\right)}{\delta+t_{1}}\right] \sqrt{\frac{\delta+t_{1}}{2 \delta}} \tag{19}
\end{equation*}
$$

and similarly for the second line of (18). Here the subscript 1 refers to the global matrix \mathbf{G}_{1} and its components, while $\mathbf{M}, \mathbf{N}, \mathbf{m}, \mathbf{n}$ without subscripts are the 2×2 submatrices of the matrix \mathbf{T}. Thus the uncoupled transfer matrices \mathbf{A} and \mathbf{B} for the two normal modes for the matrix \mathbf{T} are found as follows:

Find t_{1} and δ for the global matrix \mathbf{G}_{1}. From the 2×2 submatrices of \mathbf{G}_{1} and \mathbf{T} form the matrices

$$
\begin{align*}
\mathbf{A}^{\prime} & =\mathbf{M}+\mathbf{n}\left(\mathbf{m}_{1}+\overline{\mathbf{n}}_{1}\right) /\left(\delta+t_{1}\right) \tag{20}\\
\mathbf{B}^{\prime} & =\mathbf{N}-\mathbf{m}\left(\mathbf{n}_{1}+\overline{\mathbf{m}}_{1}\right) /\left(\delta+t_{1}\right) \tag{21}
\end{align*}
$$

Find the determinants of these matrices (they should be equal). The uncoupled matrices A and B are the unimodular 2×2 matrices

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}^{\prime} / \sqrt{\operatorname{det}\left(\mathbf{A}^{\prime}\right)} \quad \mathbf{B}=\mathbf{B}^{\prime} / \sqrt{\operatorname{det}\left(\mathbf{B}^{\prime}\right)} \tag{22}
\end{equation*}
$$

The phase advances for going through \mathbf{T} can be found using the parameterization

$$
\mathbf{A}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{x 2}}{\beta_{x 1}}}\left(\cos \psi_{x}+\alpha_{x 1} \sin \psi_{x}\right) & \sqrt{\beta_{x 1} \beta_{x 2}} \sin \psi \tag{23}\\
\ldots & \sqrt{\frac{\beta_{x 1}}{\beta_{x 2}}}\left(\cos \psi_{x}-\alpha_{x 2} \sin \psi_{x}\right)
\end{array}\right)
$$

where the (21) element is obtained by requiring \mathbf{A} to be unimodular; the \mathbf{B} matrix has the same form with the y parameters. The phase advances are therefore

$$
\begin{align*}
& \psi_{x}=\arctan \left[A_{12} /\left(\beta_{x 1} A_{11}-\alpha_{x 1} A_{12}\right)\right] \tag{24}\\
& \psi_{y}=\arctan \left[B_{12} /\left(\beta_{y 1} B_{11}-\alpha_{y 1} B_{12}\right)\right] \tag{25}
\end{align*}
$$

which are again expressed in terms of the parameters of the previous global matrix \mathbf{G}_{1} and of \mathbf{T}.

Dispersion

The fifth and sixth rows and columns of the full matrices refer to the change in path length $-\Delta s$ and to relative momentum deviation $\Delta p / p$. In the uncoupled case, the x-variables still depend on momentum; this is customarily described (as in the SYNCH program), by augmenting the 2×2 matrix with a third column, where the elements A_{13} and A_{23} describe the dependence of excursion and slope on momentum. The corresponding elements in the decoupled matrices developed here can be obtained by augmenting the matrices \mathbf{R} effecting the similarity transformations with fifth and sixth rows and columns, all zero except for $R_{55}=R_{66}=1$.

Printed Output

In the SYNCH program matrices with $x-y$ coupling are generally formulated in a 7×7 format (the seventh column describes perturbations, and need not concern us here). However, in the CYC and FXPT operations, which calculate the betatron functions at the end of each element of a lattice or transport line, all 7×7 matrices are truncated in previous versions of $\mathbf{S Y N C H}$ to two 2×3 matrices each, with coupling information lost. We have attempted to remedy this truncation algorithm in the present version of SYNCH. In the FXPT operation in the new version, the results of the previous sections are used to generate α and β functions, dispersion functions, and phase advances pertaining to the normal oscillation modes of the coupled system (called x and y but not necessarily horizontal and vertical in space), while the closed orbit FXPT produces should still be in space coordinates. The transformations between normal modes and space coordinates (e.g. the matrix \mathbf{D}) are not exhibited in the $\mathbf{S Y N C H}$ output, but the coupling angle φ is printed out at each point of the lattice, together with the other orbit functions.

REFERENCES

1. A. A. Garren, A. S. Kenney, J. W. Eusebio, SYNCH-A Computer System for Synchrotron Design and Orbit Analysis, LBL Internal Report UCID-10153, 1965.
2. A. A. Garren, A. S. Kenney, E. D. Courant, M. J. Syphers, A Users Guide to SYNCH, Fermilab Report, unpublished, June, 1985
3. A. A. Garren, SYNCH Closed Orbit and Related Calculations, PEP Technical Memo 49, 1977. A discussion of the methods used in SYNCH to calculate closed orbit information.
4. E. D. Courant, H. S. Snyder, Theory of the Alternating Gradient Synchrotron, Annals of Physics, Vol. 3, No. 1, 1958.
5. P. L. Morton, Effects of Transverse Coupling in the SLAC Storage Ring, SLAC-PUB-863, 1971 Particle Accelerator Conference, Chicago, Illinois.
6. F. James, M. Roos, MINUIT-Function Minimization and Error Analysis, CERN Computer Center Program Library, D506, 1967, revised 1983. CERN write-up referring to FORTRAN 77 and FORTRAN 4 implementation of MINUIT.
7. Proceedings from the 1981-1989 Summer Schools on High Energy Particle Accelerators. Provide many excellent articles, tutorials, problems in accelerator physics.
8. Theoretical Aspects of the Behavior of Beams in Accelerators and Storage Rings, Proceedings of the First Course of the International School of Particle Accelerators, November 1976; CERN, 1977.
9. B. Autin and Y. Marti, Closed Orbit Correction of Alternating Gradient Machines Using a Small Number of Magnets, CERN/ISR-MA/73-17, CERN, 1973.
10. D. A. Edwards, L. C. Teng, Parameterization of Linear Coupled Motion in Periodic Systems. IEEE Trans. Nucl. Sci., 20, No. 3, 85 (1973)
11. H. Grote, F. Christoph Iselin, The MAD Program User's Reference Manual, Version 8.4, CERN/SL/90-13 (AP) (Revision 2). Some earlier versions of MAD contained a SYNCH to MAD translator.
12. E. D. Courant, Parameterization of Transport and Period Matrices with X-Y Coupling, BNL Report, to be published.
13. DEPOL is an unpublished program to compute depolarization effects written by E. D. Courant.
14. M. Sands, The Physics of Electron Storage Rings, An Introduction, SLAC-121, Nov. 1970

APPENDIX A
 FILES

This Appendix describes disk files used by the program during execution and some special purpose files that may contain diagnostic information or data for user-written post-processors.

Files generated by commands whose major purpose is to create them are automatically saved. Some files are made as option requests in action-type commands or by OPEN. Other files are deleted unless a save request is made by KEEP. See OPEN and KEEP for internal files names to be used as their data. Files saved are identified by the corresponding FORTRAN logical unit number and have names of the form determined by the default conventions of the computer system in use. For example, if xx is the logical unit number, VAX names are of the form FOROxx.DAT; Sun names, of the form fort. xx.

The files used by SYNCH are listed in Table A below.

Table A. Files Used by SYNCH.

Internal Name	Logical Unit	Description
JFILE	2	Input data file submitted by user.
OUT3	3	ASCII Output file from SYNCH program.
SVOUT	4	Summary and diagnostic file created by fitting program MINUIT, which is invoked by SOLV. It is not saved unless requested by KEEP command. If one encounters a problem with solving, sometimes valuable information may be found in this file.
INFILE	8	Corrected copy of input file 2 . If file 2 is an old input file containing outdated command names, they are replaced with current names on this file. If changes have occurred, this file is saved, so that the user may rename it to the file 2 and submit it in future runs, thus avoiding editing the old one.
FIL11	11	Binary file of polarization parameters made by CYC and FXPT upon request. In both cases, it must be requested by OPEN. The CYC command must also choose the proper option in its m-value.
JBIS	15	Binary file of betatron functions made by CYC on option.
PLFILE	17	ASCII file containing values that are stored for plotting program. It is not used by plot program, but could be looked at by user or function as input to any other outside program. It is written only by a request in OPEN.
CYBO	20	ASCII file of the dispersion functions crated by CYC on option.
ORB1	24	Binary file written by FXPT, read by ORBC. It is saved only by a request in KEEP.
OFILE	26	ASCII file consisting of updated input requested by UPDAT. This file may be used as input for a future SYNCH run.
LFIL	70	ASCII file written by IOUT. Can be used as input to a SYNCH-to-MAD translator.

APPENDIX B

SAMPLE RUNS

This section provides examples of SYNCH runs, which have been run on a VAX. Both the input and output files are included.

B. 1 Calculation of Periodic Lattice Functions

B. 2 Fitting of Tunes in a Phase Trombone

B. 3 Closed Orbit Calculations

B. 1 Calculation of Periodic Lattice Functions

This example illustrates the way in which magnetic elements and beamlines are defined and how periodic accelerator lattice functions can be computed. A standard cell of the Fermilab Tevatron is used. Also exhibited is the use of the "matrix multiply" command MMM.


```
P}\quad\mathrm{ Computation of Betatron Functions
C
```


This particular SYNCH run calculates the betatron
functions through a Tevatron standard FODO cell.

Lengths in meters, field strengths in $k G, k G / m$, etc.
Magnetic Rigidity at 1 TeV ...

***	BRHO	//	33387.702
	Bend field strength		
***	BY	//	44.27664
	Quadrupole gradients		
***	GF	$1 /$	760.32056
***	GD	//	-760.3205
	Magnet lengths		
***	BL	//	6.1214
***	QL	//	1.67894

Drift Definitions

$* * *$	0	DRF	$/ /$	0.2794
$* * *$	OO	DRF	$/ /$	2.29616
$* * *$	000	DRF	$/ /$	0.4445

***	B	MAG	//	BL		0.0		BR		BY		\$
***	QF	MAG	//	QL		GF		BR				
***	QD	MAG	//	QL		GD		BR				
Standard Cell Beamline Definition												
**	HC	BML	//	00	B	0	B	0	B	0	B	000
**	CELL	BML	//	HC	QF	HC	QD					

Computation of Betatron Functions

*	CYC	$1 /$	CELL									
Pos	S (M)	NUX	NUY	BETAX (M)	BETAY (M)	XEQ (M)	YEQ (M)	ZEQ (M)	ALPhAX	ALP HAY	DXEQ	DYEQ
0	0.0000	0.00000	0.00000	29.04507	97.80421	2.26773	0.00000	0.0000	-0.58154	1.87141	0.04412	0.00000
100	2.2962	0.01201	0.00391	31.95858	89.45278	2.36903	0.00000	0.0000	-0.68733	1.76572	0.04412	0.00000
2 B	8.4176	0.03869	0.01627	42.09965	69.55521	2.66393	0.00000	0.0204	-0.96935	1.48467	0.05223	0.00000
30	8.6970	0.03974	0.01691	42.64492	68.72917	2.67852	0.00000	0.0204	-0.98222	1.47180	0.05223	0.00000
4 B	14.8184	0.05966	0.03317	56.39634	52.43252	3.02311	0.00000	0.0435	-1.26425	1.19036	0.06035	0.00000
50	15.0978	0.06044	0.03403	57.10640	51.77095	3.03997	0.00000	0.0435	-1.27712	1.17748	0.06035	0.00000
6 B	21.2192	0.07540	0.05575	74.46816	39.07971	3.43425	0.00000	0.0697	-1.55915	0.89571	0.06847	0.00000
70	21.4986	0.07600	0.05690	75.34301	38.58278	3.45338	0.00000	0.0697	-1.57202	0.88283	0.06847	0.00000
8 B	27.6200	0.08744	0.08594	96.31512	29.50044	3.89735	0.00000	0.0996	-1.85405	0.60083	0.07659	0.00000
9000	28.0645	0.08817	0.08836	97.97247	28.97542	3.93140	0.00000	0.0996	-1.87453	0.58032	0.07659	0.00000
10 QF	29.7434	0.09087	0.09768	97.97247	28.97530	3.93310	0.00000	0.0996	1.87453	-0.58024	-0.07457	0.00000
1100	32.0396	0.09477	0.10972	89.60695	31.88317	3.76189	0.00000	0.0996	1.76874	-0.68617	-0.07457	0.00000
12 B	38.1610	0.10711	0.13646	69.67928	42.01003	3.33029	0.00000	0.1283	1.48671	-0.96811	-0.06645	0.00000
13 O	38.4404	0.10776	0.13751	68.85210	42.55461	3.31172	0.00000	0.1283	1.47384	-0.98100	-0.06645	0.00000
14 B	44.5618	0.12398	0.15747	52.53477	56.28955	2.92982	0.00000	0.1536	1.19181	-1.26268	-0.05833	0.00000
150	44.8412	0.12483	0.15826	51.87238	56.99873	2.91352	0.00000	0.1536	1.17894	-1.27556	-0.05833	0.00000
16 B	50.9626	0.14652	0.17325	39.16540	74.33796	2.58131	0.00000	0.1759	0.89691	-1.55690	-0.05021	0.00000
17 O	51.2420	0.14766	0.17384	38.66780	75.21155	2.56728	0.00000	0.1759	0.88404	-1.56977	-0.05021	0.00000
18 B	57.3634	0.17663	0.18531	29.57116	96.15030	2.28476	0.00000	0.1955	0.60201	-1.85069	-0.04209	0.00000
19000	57.8079	0.17904	0.18604	29.04507	97.80466	2.26605	0.00000	0.1955	0.58154	-1.87115	-0.04209	0.00000
20 QD	59.4868	0.18835	0.18874	29.04507	97.80421	2.26773	0.00000	0.1955	-0.58154	1.87141	0.04412	0.00000

Define a new "beamline" made up of the above two matrices. Print out betatron functions at the ends of the quadrupoles..

END OF SYNCH RUN TEVC

B. 2 Fitting of Tunes in a Phase Trombone

In the following example, a "trombone" is constructed: a beam line in which quadrupoles can be varied so as to adjust the tunes (phase advances) to any desired value while preserving the values of the orbit functions at the ends of the beam line - thus such a trombone can be inserted in a lattice without changing the optical properties of the rest of the lattice. This is accomplished using the SOLV command. The quadrupoles are initially set the same as those in the standard cell (which gives a phase advance of $5 / 6$ times 2 pi), and then adjusted by SOLV so as to vary this phase advance while maintaining the orbit function matching.


```
C Fit Phase Trombone ...
C
C
C Trombone Quadrupole Magnets
C
C
C
C
    IBT IBET
    KAA PARA KF
    KBB 
    KDD PARA KD
    KEE PARA KF
    TRMB SUB
    QFA MAG LQ
    QDB MAG LQ
    QFC MAG LQ
    QDD MAG LQ KDD BR
    QFE MAG LQ KEE BR
    TTR TRKB 0 30.TR IBT
        END
C
C (NOTE: In the TRKB statement a CL could
C
C
C
C
C
C
C
C Specify Desired Phase Advance Through
C the Trombone...
C
    MUXT = . }8
    MUYT = . 85
C
```

```
C Vary trombone parameters so as to obtain the desired phase advance. Repeat
C with different values of the phase advance.
C
C (The following line may optionally be inserted anywhere in an input file to
C assist the programmer in finding the appropriate columns for entries)
C...;....1....;....2....;....3....;....4....; ....5....;....6....;....7....;.....
    VARPH SUB
            SOLV 5 1 T
                        AX NY 15
            DX 15
            NUX 30
            NUY 30
            KAA KBB KCC
                3000 -3
\begin{tabular}{ll}
\multicolumn{1}{c}{2} & \\
0.0 & .0001 \\
0.0 & .0001 \\
0.0 & .0001 \\
MUXT & .001 \\
MUYT & .001 \\
.004 & .00001
\end{tabular}
    INS
        CYC -1
        INCR 1 MUXT . 05
        INCR 1 MUYT . }0
        END
        CALL 3 VARPH
        PAGE
        CALL TRMB
C
    STOP
```

In this example, the phase advance through a "phase trombone" is fitted to specified values The phase trombone consists of 4 standard-sized cells with full bending, but the quadrupoles are powered separately. The idea is to match the Courant-Snyder parameters at the beginning and end of the trombone to those of the standard cell but to make the phase advance through the trombone any value one wishes.

Phase Trombone:

Adjust quad power supplies A, B, C,D,E to make phase advances from middle of $Q D$ to middle of $Q D$ desired values.

Lengths in meters, Fields in Tesla, Tesla/meter

$* * *$	BRHO	$=$	$/ /$	66712.8		
$* * *$	BO	$=$	$/ /$	6.0		
$* * *$	RHO	$=$	$/ /$	11118.8		
$* * *$	RHI	$=$	$/ /$	1.	$/$	RHO

60-degree Standard Cells:

***	SRC	SUB	0	0	//			
***	QF	MAG			//	LQ	KF	BR
***	QD	MAG			//	LQ	KD	BR
***	CL	MMM			//	C		
**		END	0	0	//			

$* * *$	O	DRF	$1 /$	0.5
$* * *$	OO	DRF	$1 /$	2.5
$* * *$	OOC	DRF	$1 /$	5.0

***	. BB	BML	//	B	\bigcirc	B	\bigcirc	B	0	B	0	B
***	. OBO	BML	//	OOC	. BB	OOC						
***	BB	MMM	//	. BB								
***	OBO	MMM	//	. OB								
***	FD	BML	//	QF	. OBO	QD						
***	DF	BML	//	QD	. ово	QF						
***	C	BML	//	DF	FD							
Phase Trombone												
***	.TR	BML	//	QD	OBO	QFA	QFA	OBO	QDB	QDB	OBO	QFC
*			//	QFC	OBO	QDD	QDD	ово	QFE	QFE		
*			//	OBO	QDD	QDD	OBO	QFC	QFC			
*			//	OBO	QDB	QDB	OBO	QFA	QFA	OBO	$Q D$	

PARAMETER REPLACEMENTS MADE BY FITTING

***	CELL	CYC											
POS		S (M)	NUX	NUY	BETAX (M)	BETAY (M)	XEQ (M)	YEQ (M)	ZEQ (M)	ALPHAX	ALPHAY	DXEQ	DYEQ
0		0.0000	0.00000	0.00000	115.95190	344.95041	2.24716	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000
1	QD	2.5000	0.00342	0.00116	117.48644	340.60149	2.26146	0.00000	0.0000	-0.61641	1.73219	0.01145	0.00000
2	OOC	7.5000	0.01001	0.00356	123.94423	323.57321	2.31872	0.00000	0.0000	-0.67514	1.67346	0.01145	0.00000
3	B	24.1000	0.02946	0.01248	149.59536	271.25075	2.52121	0.00000	0.0036	-0.87010	1.47849	0.01294	0.00000
4	\bigcirc	24.6000	0.02999	0.01277	150.46840	269.77519	2.52769	0.00000	0.0036	-0.87598	1.47262	0.01294	0.00000
5	B	41.2000	0.04595	0.02352	182.78703	224.12080	2.75496	0.00000	0.0076	-1.07093	1.27765	0.01444	0.00000
6	0	41.7000	0.04639	0.02388	183.86089	222.84610	2.76217	0.00000	0.0076	-1.07680	1.27177	0.01444	0.00000
7	B	58.3000	0.05945	0.03695	222.84674	183.85978	3.01422	0.00000	0.0119	-1.27174	1.07680	0.01593	0.00000
8	\bigcirc	58.8000	0.05981	0.03738	224.12142	182.78592	3.02218	0.00000	0.0119	-1.27762	1.07093	0.01593	0.00000
9	B	75.4000	0.07056	0.05334	269.77413	150.46768	3.29901	0.00000	0.0166	-1.47255	0.87595	0.01742	0.00000
10	\bigcirc	75.9000	0.07086	0.05387	271.24961	149.59466	3.30772	0.00000	0.0166	-1.47842	0.87008	0.01742	0.00000
11	B	92.5000	0.07978	0.07332	323.56875	123.94449	3.60932	0.00000	0.0217	-1.67334	0.67511	0.01891	0.00000
12	OOC	97.5000	0.08217	0.07992	340.59570	117.48703	3.70389	0.00000	0.0217	-1.73206	0.61638	0.01891	0.00000
13	QF	100.0000	0.08333	0.08333	344.94429	115.95257	3.72756	0.00000	0.0217	0.00000	0.00000	0.00000	0.00000
14	QF	102.5000	0.08449	0.08675	340.59570	117.48703	3.70389	0.00000	0.0217	1.73206	-0.61638	-0.01891	0.00000
15	OOC	107.5000	0.08689	0.09335	323.56875	123.94449	3.60932	0.00000	0.0217	1.67334	-0.67511	-0.01891	0.00000
16	B	124.1000	0.09581	0.11280	271.24961	149.59466	3.30772	0.00000	0.0269	1.47842	-0.87008	-0.01742	0.00000
17	0	124.6000	0.09611	0.11333	269.77413	150.46768	3.29901	0.00000	0.0269	1.47255	-0.87595	-0.01742	0.00000
18	B	141.2000	0.10686	0.12928	224.12142	182.78592	3.02218	0.00000	0.0316	1.27762	-1.07093	-0.01593	0.00000
19	\bigcirc	141.7000	0.10721	0.12972	222.84674	183.85978	3.01422	0.00000	0.0316	1.27174	-1.07680	-0.01593	0.00000
20	B	158.3000	0.12028	0.14279	183.86089	222.84610	2.76217	0.00000	0.0359	1.07680	-1.27177	-0.01444	0.00000
21	\bigcirc	158.8000	0.12072	0.14314	182.78703	224.12080	2.75496	0.00000	0.0359	1.07093	-1.27765	-0.01444	0.00000
22	B	175.4000	0.13667	0.15389	150.46840	269.77519	2.52769	0.00000	0.0399	0.87598	-1.47262	-0.01294	0.00000
23	0	175.9000	0.13720	0.15419	149.59536	271.25075	2.52121	0.00000	0.0399	0.87010	-1.47849	-0.01294	0.00000
24	B	192.5000	0.15665	0.16311	123.94423	323.57321	2.31872	0.00000	0.0435	0.67514	-1.67346	-0.01145	0.00000
25	OOC	197.5000	0.16325	0.16551	117.48644	340.60149	2.26146	0.00000	0.0435	0.61641	-1.73219	-0.01145	0.00000
26	QD	200.0000	0.16667	0.16667	115.95190	344.95041	2.24716	0.00000	0.0435	0.00000	0.00000	0.00000	0.00000

```
CIRCUMFERENCE = 200.0000 M
    RADIUS = 31.8310 M
(DS/S)/(DP/P)=0.0002174
```

THETX $=$	0.01492967 RAD	NUX $=$	0.16667	DNUX $/(\mathrm{DP} / \mathrm{P})=$	-0.18367
THETY $=$	0.00000000 RAD	NUY $=$	0.16667	DNUY/(DP/P) $=$	-0.18370
TGAM $=(67.82970$,	$0.00000)$				

MAXIMA	BETX(13)		344.94429	BETY (1)	$=$	344.95041	XEQ (13)		3.72756	YEQ (26)	$=$	0.00000
MINIMA	- BETX(26)		115.95190	BETY(13)		115.95257	XEQ (1)		2.24716	YEQ(26)		0.00000

Trombone Quadrupole Magnets

***	IBT	IBET			//			115.95190	0.		0.0086243	2.24716	0.0
*					//			344.95041	0.		0.0028990	0.0	0.0
***	KAA	PARA			//	KF							
***	KBB	PARA			//	KD							
***	KсC	PARA			//	KF							
***	KDD	PARA			//	KD							
***	KEE	PARA			//	KF							
***	TRMB	SUB	0	0	//								
***	QFA	MAG			//	LQ		KAA	BR				
***	QDB	MAG			//	LQ		KBB	BR				
***	QFC	MAG			//	LQ		KCC	BR				
***	QDD	MAG			//	LQ		KDD	BR				
***	QFE	MAG			//	LQ		KEE	BR				
***	TTR	TRKB	0	30	//	.TR	IBT			0	30		
***		END	0	0	//								

> NOTE: In the TRKB statement a CL could
> have been appropriately placed in line 1 instead of IBT
> The program would have then retrieved the values of the Courant-Snyder parameters
from the matrix CL.)

Specify Desired Phase Advance Through the Trombone...

```
*** MUXT = 
```

Vary trombone parameters so as to obtain the desired phase advance. Repeat with different values of the phase advance
(The following line may optionally be inserted anywhere in an input file to assist the programmer in finding the appropriate columns for entries)
*** VARPH SUB 0 //

**		SOLV	5	1	//	TRMB	TTR						2	
*					//	AX							0.0	. 0001
*					//	AY							0.0	. 0001
*					//	DX							0.0	. 0001
*					$1 /$	NUX							MUXT	. 001
*					//	NUY							MUYT	. 001
*					$1 /$	KAA	KBB	KCC	KDD	KEE		-. 004	. 004	. 00001
***	INS	CYC	-1		//	. TR								
***		INCR	1		$1 /$	MUXT		. 05						
***		INCR	1		//	MUYT		. 05						
***		END	0	0	//									

*** CALL 3 // VARPH

---	SOLV	--- BETA-FUNCTION FITTING	
INITIAL	VALUES	OF VARIABLES	
1	KAA	1	$0.20340335 \mathrm{E}-02$
2	KBB	1	$-0.20341561 \mathrm{E}-02$
3	KCC	1	$0.20340335 \mathrm{E}-02$
4	KDD	1	$-0.20341561 \mathrm{E}-02$
5	KEE	1	$0.20340335 \mathrm{E}-02$

CONSTRAINT/	FUNCTION		POSITIONS OR INDICES	PRESENT VALUE	DESIRED VALUE	ERROR	TOLERANCE
1	AX	15		0.0000017	0.0000000	0.0000017	0.0001000
2	AY	15		0.0000049	0.0000000	0.0000049	0.0001000
3	DX	15		0.0000000	0.0000000	0.0000000	0.0001000
4	NUX	30		0.8333318	0.8500000	-0.0166682	0.0010000
5	NUY	30		0.8333291	0.8500000	-0.0166709	0.0010000

INITIAL	VALUES		OF VARIABLES
1	KAA	1	$0.21714574 \mathrm{E}-02$
2	KBB	1	$-0.21333424 \mathrm{E}-02$
3	KCC	1	$0.21510517 \mathrm{E}-02$
4	KDD	1	$-0.23049061 \mathrm{E}-02$
5	KEE	1	$0.22472817 \mathrm{E}-02$

CONSTRAINT/	FUNCTION		POSITIONS OR INDICES	PRESENT VALUE	DESIRED VALUE	ERROR	TOLERANCE
1	AX	15		0.0000000	0.0000000	0.0000000	0.0001000
2	AY	15		0.0000000	0.0000000	0.0000000	0.0001000
3	DX	15		0.0000000	0.0000000	0.0000000	0.0001000
4	NUX	30		0.9000000	0.9500000	-0.0500000	0.0010000
5	NUY	30		0.8999998	0.9500000	-0.0500002	0.0010000

POS		S	QX	BX	AX	x	DX	HX (CM)	QY	BY	AY	Y	DY
0		0.0000	0.00000	115.9519	0.00000	2.24716	0.00000	4.35504	0.00000	344.9504	0.00000	0.00000	0.00000
1	QD	2.5000	0.00342	117.4864	-0.61642	2.26146	0.01145	4.35504	0.00116	340.6015	1.73219	0.00000	0.00000
2	OBO	97.5000	0.08217	340.5960	-1.73206	3.70388	0.01891	4.02810	0.07992	117.4873	0.61638	0.00000	0.00000
3	QFA	100.0000	0.08333	344.5052	0.17571	3.72518	-0.00190	4.02810	0.08333	116.1020	-0.05967	0.00000	0.00000
4	QFA	102.5000	0.08450	338.8553	2.07369	3.69441	-0.02269	4.02810	0.08674	118.0896	-0.73907	0.00000	0.00000
5	OBO	197.5000	0.17842	86.0110	0.58778	1.89351	-0.01523	4.21346	0.16110	376.6827	-1.98297	0.00000	0.00000
6	QDB	200.0000	0.18310	84.3070	0.09688	1.86812	-0.00511	4.21346	0.16215	381.5419	0.04802	0.00000	0.00000
7	QDB	202.5000	0.18781	85.0335	-0.38878	1.86791	0.00494	4.21346	0.16320	376.2068	2.07644	0.00000	0.00000
8	OBO	297.5000	0.29313	281.0676	-1.67470	2.69169	0.01240	2.94913	0.24087	109.1063	0.73515	0.00000	0.00000
9	QFC	300.0000	0.29453	285.4736	-0.07937	2.70353	-0.00294	2.94913	0.24457	107.0410	0.09484	0.00000	0.00000
10	QFC	302.5000	0.29593	281.8538	1.52045	2.67703	-0.01824	2.94913	0.24827	108.1488	-0.54005	0.00000	0.00000
11	OBO	397.5000	0.39221	99.0043	0.40425	1.29886	-0.01078	2.00043	0.33379	318.5482	-1.67468	0.00000	0.00000
12	QDD	400.0000	0.39624	98.6300	-0.25376	1.28227	-0.00251	2.00043	0.33503	321.8298	0.36906	0.00000	0.00000
13	QDD	402.5000	0.40023	101.5690	-0.92812	1.28625	0.00571	2.00043	0.33627	314.8969	2.38927	0.00000	0.00000
14	OBO	497.5000	0.47411	443.2895	-2.66887	2.18279	0.01317	1.07486	0.46743	53.2060	0.36537	0.00000	0.00000
15	QFE	500.0000	0.47500	449.9952	0.00000	2.19927	0.00000	1.07486	0.47500	52.2971	0.00000	0.00000	0.00000
16	QFE	502.5000	0.47589	443.2895	2.66887	2.18279	-0.01317	1.07486	0.48256	53.2060	-0.36537	0.00000	0.00000
17	Obo	597.5000	0.54977	101.5690	0.92812	1.28622	-0.00571	2.00030	0.61372	314.8969	-2.38927	0.00000	0.00000
18	QDD	600.0000	0.55375	98.6300	0.25376	1.28224	0.00251	2.00030	0.61497	321.8298	-0.36906	0.00000	0.00000
19	QDD	602.5000	0.55779	99.0043	-0.40425	1.29883	0.01077	2.00030	0.61621	318.5482	1.67468	0.00000	0.00000
20	OBO	697.5000	0.65407	281.8538	-1.52045	2.67694	0.01824	2.94893	0.70173	108.1488	0.54005	0.00000	0.00000
21	QFC	700.0000	0.65547	285.4736	0.07937	2.70344	0.00294	2.94893	0.70543	107.0410	-0.09484	0.00000	0.00000
22	QFC	702.5000	0.65687	281.0676	1.67470	2.69160	-0.01240	2.94893	0.70912	109.1063	-0.73515	0.00000	0.00000
23	OBO	797.5000	0.76219	85.0335	0.38878	1.86786	-0.00494	4.21323	0.78680	376.2068	-2.07644	0.00000	0.00000
24	QDB	800.0000	0.76690	84.3070	-0.09688	1.86807	0.00511	4.21323	0.78785	381.5419	-0.04802	0.00000	0.00000
25	QDB	802.5000	0.77158	86.0110	-0.58778	1.89346	0.01523	4.21323	0.78890	376.6827	1.98297	0.00000	0.00000
26	OBO	897.5000	0.86550	338.8553	-2.07369	3.69434	0.02269	4.02795	0.86326	118.0896	0.73907	0.00000	0.00000
27	QFA	900.0000	0.86667	344.5052	-0.17571	3.72511	0.00190	4.02795	0.86667	116.1020	0.05967	0.00000	0.00000
28	QFA	902.5000	0.86782	340.5960	1.73206	3.70382	-0.01891	4.02795	0.87008	117.4873	-0.61638	0.00000	0.00000
29	OBO	997.5000	0.94658	117.4864	0.61642	2.26145	-0.01145	4.35500	0.94884	340.6015	-1.73219	0.00000	0.00000
30	QD	1000.0000	0.95000	115.9519	0.00000	2.24715	0.00000	4.35500	0.95000	344.9504	0.00000	0.00000	0.00000

END OF SYNCH RUN TRMB

B. 3 Closed Orbit Calculations

Here, the closed orbit in a synchrotron due to a single misaligned quadrupole magnet is computed using two different methods. In the first part of the example, the misaligned magnet is defined using a MAGS command within the BMIS/EMIS environment and the closed orbit is computed from a CYC command. In the second part of the example, a MOVE command is used to define the misaligned element and the new closed orbit is sought using a FXPT command. Several other features are exhibited in this example, including the use of a subroutine, the use of parentheses in defining a beamline, and the printing of matrix elements.


```
C
C Begin the Magnet Misalignment Mode...
C
C
C
    ARC MMM 76( CELL )
C
C
C
C
C
    llll
C
C Define a new "beamline" made up of the above two matrices.
C
    C BML MHCF MHCD
C
C
C
C
C
    MSQ MAGS 2 QF 0.0 0.0 0.0
C
    MSC BML MHC MSQ MHCD
C
C
C
C
    RNG BML 10( C ) MSC 9( C ) ARC
C
C
C
C
C
C
C
C
C
C
CYC RNG
C
C
EMIS
```

```
P
C
llllllll
C
C
\begin{tabular}{lllllllll} 
C & & & dx & dxp & dy & dyp & ds & dphi \\
VC & VEC & 6 & 0.0 & 0.0 & -0.010 & 0.0 & 0.0 & 0.0 \\
QFM & MOVE & & QF & VC & & & &
\end{tabular}
C
WMA 2 QF QFM
C
C Now the closed orbit may be calculated using FXPT...
C Provide initial guess of closed orbit for the FXPT routine:
C
```



```
P
    S FXPT 2 1 PV RNG 1 1 0
C
    STOP
```

> Calculation of Closed Orbit for a Synchrotron with a Misaligned Element. The calculation will be performed using two different methods -- $\begin{aligned} & \text { 1) using BMIS and CYC } \\ & \text { 2) using MOVE and FXPT }\end{aligned}$

Lengths in meters, field strengths in $k G, k G / m$, etc.
Magnetic Rigidity at 1 TeV ...

Magnet lengths ...

$* * *$	BL	$=$	$/ /$	6.1214
$* * *$	QL	$=$	$/ /$	1.67894

Magnet definitions ..
Magnet Definitions

Drift Definitions
\Downarrow
ن̈
U

$* * *$	0	DRF	$/ /$	0.2794
$* * *$	00	DRF	$/ /$	2.29616
$* * *$	000	DRF	$/ /$	0.4445

*** HC BML $/ /$ OO B $0 \quad$ B
0
*** CELL BML // HC QF HC QD

***	CALL	1	$1 /$	MDFN
*** ARC MMM		$1 /$	$76(\mathrm{CELL})$	

Define half-cell matrices in order to print out betatron functions only at the ends of the quadrupoles...

$* * *$	MHC	MMM	//	HC	
$* * *$	MHCF	MMM	$/ /$	HC	QF
$* * *$	MHCD	MMM	$/ /$	HC	QD

Define a new "beamline" made up of the above two matrices.
*** C BML
// MHCF MHCD

Define the misaligned element and a corresponding
"misaligned" standard cell

$* * *$	MSQ	MAGS	2	$1 /$	QF	0.0	0.0	-.010	-.010	0.0
$* * *$	MSC	BML		$/ /$	MHC	MSQ	MHCD			

Define a ring made up of the above standard cells with one quadrupole being misaligned.
// 10(C
) MSC 9(C
) $A R C$

Calculate the Closed Orbit using CYC. (In BMIS mode, th closed orbit will appear in the columns marked XEQ, YEQ. in the CYC output.) Note that in this CYC output, each line will correspond to the end of a quadrupole. Also, the "tunes" at the end of the CYC output will be incorrect because the phase advance through the matrix ARC is greater than 2pi See Section IV -- CYC

***		CYC	//	NG									
POS		S (M)	NUX	NUY	BETAX (M)	BETAY (M)	XEQ (M)	YEQ (M)	ZEQ (M)	ALPHAX	ALP HAY	DXEQ	DYEQ
0		0.0000	0.00000	0.00000	29.04507	97.80157	0.00000	0.02419	0.0000	-0.58154	1.87136	0.00000	-0.00060
1	MHCF	29.7434	0.09087	0.09769	97.97246	28.97421	0.00000	0.00663	0.0003	1.87453	-0.58022	0.00000	-0.00033
2	MHCD	59.4868	0.18835	0.18875	29.04507	97.80157	0.00000	-0.00313	0.0005	-0.58154	1.87136	0.00000	-0.00022
3	MHCF	89.2302	0.27922	0.28643	97.97246	28.97421	0.00000	-0.00997	0.0008	1.87453	-0.58022	0.00000	-0.00059
4	MHCD	118.9736	0.37669	0.37749	29.04507	97.80157	0.00000	-0.02654	0.0011	-0.58154	1.87136	0.00000	0.00043
5	MHCF	148.7170	0.46756	0.47518	97.97246	28.97421	0.00000	-0.01412	0.0014	1.87453	-0.58022	0.00000	-0.00011
6	MHCD	178.4604	0.56504	0.56624	29.04507	97.80157	0.00000	-0.01680	0.0016	-0.58154	1.87136	0.00000	0.00054
7	MHCF	208.2038	0.65591	0.66393	97.97246	28.97421	0.00000	-0.00063	0.0019	1.87453	-0.58022	0.00000	0.00050
8	MHCD	237.9472	0.75339	0.75499	29.04507	97.80157	0.00000	0.01393	0.0022	-0.58154	1.87136	0.00000	-0.00002
9	MHCF	267.6906	0.84426	0.85267	97.97246	28.97421	0.00000	0.01365	0.0025	1.87453	-0.58022	0.00000	0.00049
10	MHCD	297.4340	0.94173	0.94374	29.04507	97.80157	0.00000	0.02726	0.0027	-0.58154	1.87136	0.00000	-0.00056
11	MHCF	327.1774	1.03260	1.04142	97.97246	28.97421	0.00000	0.01088	0.0030	1.87453	-0.58022	0.00000	-0.00014
12	MHCD	356.9208	1.13008	1.13248	29.04507	97.80157	0.00000	0.00654	0.0033	-0.58154	1.87136	0.00000	-0.00040
13	MHCF	386.6642	1.22095	1.23017	97.97246	28.97421	0.00000	-0.00548	0.0036	1.87453	-0.58022	0.00000	-0.00059
14	MHCD	416.4076	1.31843	1.32123	29.04507	97.80157	0.00000	-0.02235	0.0038	-0.58154	1.87136	0.00000	0.00026

15 MHCF	446.1510	1.40930	1.41891	97.97246	28.97421	0.00000	-0.01499	0.0041	1.87453	-0.58022	0.00000	-0.00031
16 MHCD	475.8944	1.50677	1.50998	29.04507	97.80157	0.00000	-0.02332	0.0044	-0.58154	1.87136	0.00000	0.00060
17 MHCF	505.6378	1.59764	1.60766	97.97246	28.97421	0.00000	-0.00578	0.0046	1.87453	-0.58022	0.00000	0.00036
18 MHCD	535.3812	1.69512	1.69872	29.04507	97.80157	0.00000	0.00484	0.0049	-0.58154	1.87136	0.00000	0.00018
19 MHCF	565.1246	1.78599	1.79641	97.97246	28.97421	0.00000	0.01065	0.0052	1.87453	-0.58022	0.00000	0.00058
20 MHCD	594.8680	1.88347	1.88747	29.04507	97.80157	0.00000	0.02695	0.0055	-0.58154	1.87136	0.00000	-0.00046
21 MHC	622.9325	1.97164	1.97583	97.97246	28.97434	0.00000	0.01410	0.0057	-1.87453	0.58030	0.00000	-0.00046
22 MSQ	624.6114	1.97434	1.98516	97.97246	28.97421	0.00000	0.01410	0.0057	1.87453	-0.58022	0.00000	0.00046
23 MHCD	654.3548	2.07181	2.07622	29.04507	97.80157	0.00000	0.02685	0.0060	-0.58154	1.87136	0.00000	-0.00058
24 MHCF	684.0982	2.16269	2.17390	97.97246	28.97421	0.00000	0.01002	0.0063	1.87453	-0.58022	0.00000	-0.00018
25 MHCD	713.8416	2.26016	2.26496	29.04507	97.80157	0.00000	0.00438	0.0066	-0.58154	1.87136	0.00000	-0.00036
26 MHCF	743.5850	2.35103	2.36265	97.97246	28.97421	0.00000	-0.00658	0.0068	1.87453	-0.58022	0.00000	-0.00060
27 MHCD	773.3284	2.44851	2.45371	29.04507	97.80157	0.00000	-0.02357	0.0071	-0.58154	1.87136	0.00000	0.00031
28 MHCF	803.0718	2.53938	2.55140	97.97246	28.97421	0.00000	-0.01496	0.0074	1.87453	-0.58022	0.00000	-0.00026
29 MHCD	832.8152	2.63685	2.64246	29.04507	97.80157	0.00000	-0.02207	0.0077	-0.58154	1.87136	0.00000	0.00059
30 MHCF	862.5586	2.72773	2.74014	97.97246	28.97421	0.00000	-0.00465	0.0079	1.87453	-0.58022	0.00000	0.00040
31 MHCD	892.3020	2.82520	2.83121	29.04507	97.80157	0.00000	0.00699	0.0082	-0.58154	1.87136	0.00000	0.00014
32 MHCF	922.0454	2.91607	2.92889	97.97246	28.97421	0.00000	0.01146	0.0085	1.87453	-0.58022	0.00000	0.00056
33 MHCD	951.7888	3.01355	3.01995	29.04507	97.80157	0.00000	0.02732	0.0087	-0.58154	1.87136	0.00000	-0.00049
34 MHCF	981.5322	3.10442	3.11764	97.97246	28.97421	0.00000	0.01326	0.0090	1.87453	-0.58022	0.00000	0.00002
35 MHCD	1011.2756	3.20190	3.20870	29.04507	97.80157	0.00000	0.01352	0.0093	-0.58154	1.87136	0.00000	-0.00050
36 MHCF	1041.0190	3.29277	3.30638	97.97246	28.97421	0.00000	-0.00151	0.0096	1.87453	-0.58022	0.00000	-0.00055
37 MHCD	1070.7624	3.39024	3.39745	29.04507	97.80157	0.00000	-0.01717	0.0098	-0.58154	1.87136	0.00000	0.00011
38 MHCF	1100.5058	3.48111	3.49513	97.97246	28.97421	0.00000	-0.01439	0.0101	1.87453	-0.58022	0.00000	-0.00043
39 MHCD	1130.2492	3.57859	3.58619	29.04507	97.80157	0.00000	-0.02641	0.0104	-0.58154	1.87136	0.00000	0.00059
40 MHCF	1159.9926	3.66946	3.68388	97.97246	28.97421	0.00000	-0.00930	0.0107	1.87453	-0.58022	0.00000	0.00022
41 MHCD	1189.7360	3.76694	3.77494	29.04507	97.80157	0.00000	-0.00266	0.0109	-0.58154	1.87136	0.00000	0.00033
42 ARC	5710.7328	4.08129	4.11972	29.04507	97.80157	0.00000	0.02419	0.0525	-0.58154	1.87136	0.00000	-0.00060

[^5]| *** | | CALL | 1 | $1 /$ | MDFN | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *** | MHC | MMM | | $1 /$ | HC | | | | | | |
| *** | MHCF | MMM | | $1 /$ | HC | QF | | | | | |
| *** | MHCD | MMM | | // | HC | QD | | | | | |
| *** | ARC | MMM | | $1 /$ | 761 | CELL |) | | | | |
| *** | MSC | BML | | $1 /$ | M CC | QFM | MHCD | | | | |
| *** | RNG | BML | | // | 101 | C |) | MSC | 91 C |) | ARC |

Re-define a misaligned quadrupole magnet using the MOVE command...

		dx			dxp	dy	dyp	ds	dphi	
***	VC	VEC	6	//	0.0	0.0	-0.010	0.0	0.0	0.0
***	QFM	MOVE		//	QF	vC				
Look at the magnet matrices										
**		WMA	2	//	QF					

TRANSFER MATRICES

ELEMENT

QF

QFM

Y DY/DS 0.00000000 0.00000000 1.03226803 0.03864398 0.00000000 0.00000000

THETA $=0.00000000$
0.00000000

0.00000000
 0.00000000
 1.03226803

0.03864398
0.00000000
0.00000000 0.00000000
0.00000000 1.69696015 1.03226803 0.00000000 0.00000000 0.000000000.000000000.00000000
0.00000000
0.00000000
0.00000000
1.00000000 0.0000000 . .0000000

0.00000000	0.00000000
0.00000000	0.00000000
0.00000000	0.00032268
0.00000000	0.00038644
0.00000000	0.00000000
1.00000000	0.00000000
0.00000000	1.0000000

THETA $=0.00000000$
LENGTH $=1.67894000$

Now the closed orbit may be calculated using FXPT..
Provide initial guess of closed orbit for the FXPT routine:
*** PV
(x , / / 0 .
x^{\prime},
$0 .{ }^{\mathrm{y}}$
, 0
$0 . \mathrm{y}^{\prime}$
0 .
ds
0 .
p / p)

$$
\begin{array}{lllllllllll}
* * * & \mathrm{~S} & \mathrm{FXPT} & 2 & 1 & / / & \mathrm{PV} & \text { RNG } & 1 & 0 & 10
\end{array} 0
$$

XIGN'GddV

0.58805296	14.19878280	0.00000000	0.00000000	0.00000000	0.31012944	0.00000000
-0.02252462	1.15666084	0.00000000	0.00000000	0.00000000	0.04450951	0.00000000
0.00000000	0.00000000	2.00878983	66.82241613	0.00000000	-0.03722769	0.01552896
0.00000000	0.00000000	-0.03145116	-0.54841106	0.00000000	0.00039429	-0.00016447
-0.03315950	-0.27326629	0.00037881	-0.00593122	1.00000000	-18.97781377	0.00000926
0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	1.00000000	0.00000000
0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	1.00000000

BETATRON FUNCTIONS THRU RNG

END OF SYNCH RUN MSMG

[^0]: * This document produced under Department of Energy Contract No. DE-AC35-89ER40486 for the Superconducting Super Collider Laboratory.

[^1]: * The unnormalized emittance is the phase space area of the beam defined by $\epsilon=\int n\left(x, x^{\prime}\right) d x d x^{\prime}$ and is not in general an invariant as the beam energy changes. The normalized emittance is defined by $\epsilon_{N}=\int n(x, p) d x d p$, where p is the momentum canonically conjugate to x. The two forms are related by $\epsilon=(1 / \beta \gamma) \epsilon_{N}$, where β and γ are the usual relativistic factors.

[^2]: * If any of the matrices B_{1}, \ldots, B_{k} represent elements with phase advance ψ greater than 2π, the integer part of $\Sigma \psi / 2 \pi$ may not be correct.

[^3]: * Some of the constraint lines, e.g. AXAY, generate more than one fitting constraint.

[^4]: SEE ALSO: RUN

[^5]: ***

