eRHIC Ring-Ring: Correcting Proton/Ion Velocity Variation with a Chicane in the Electron Ring: Method and Results

J. Scott Berg

Brookhaven National Laboratory
EFA Group Meeting
July 16, 2015

Motivation

- Orbit period must be same for proton/ion ring and electron ring to keep bunch trains in collision
- Wide range of energies desired in proton/ion ring: $50 \mathrm{GeV} / \mathrm{n}$ through $250 \mathrm{GeV} / \mathrm{n}$
- Correct by changing orbit length of one or both beams
- Range is 65 cm

Wiggling Chicane

- Create curved path to increase path length
- Chicane must be long, so need intermediate focusing quadrupoles
- Have beam cross straight axis, place quadrupoles at crossing point
- Cyclotron-style dipole: continuous path length variation
- Shared quadrupole for all path length corrections
- No need to move magnets

Relevant Machine Parameters

Minimum proton energy	50 GeV
Maximum proton energy	250 GeV
Gold ion energy	$100 \mathrm{GeV} / \mathrm{n}$
Minimum electron energy	5 GeV
Maximum electron energy	20 GeV
Circumference	3833 m
Maximum proton/ion beam-beam tune shift	0.015
Proton/ion normalized emittance	$2.5 \mu \mathrm{~m}$
Proton/ion β_{x} at IP	2.16 m
Proton/ion β_{y} at IP	0.27 m
Maximum synchrotron radiation power	$10 \mathrm{~kW} / \mathrm{m}$
Number of bunches	360
Electron arc dipole bneding radius	300 m
Arc average bending radius	380 m

Synchrotron Radiation

- Prefer to correct path length in electron ring
- High magnet fields required in proton/ion ring
- Synchrotron radiation gives minimum bending radius in chicane
- Smaller bending radius gives more compact chicane
- Depends on electron beam current
- Electron beam current limited by
- Beam-beam tune shift of protons/ions (lower energies)
- Synchrotron radiation in arc (higher energies)
- More radiation allows larger beam-beam tune shift on electrons
- Helpful at lower energies

Synchrotron Radiation

- Synchrotron radiation power, per unit length

$$
\frac{2}{3} \frac{e n_{b} N_{e}}{T} \frac{e^{2}}{4 \pi \epsilon_{0} m_{e} c^{2}} \frac{(p c / e)^{4}}{\left(m_{e} c^{2} / e\right)^{3}} \frac{1}{\rho^{2}}
$$

- In arc, replace ρ^{2} with $\rho_{\text {dipole }} \rho_{\text {tunnel }}$ to get average
- Leads to limitation in N_{e} at high electron energies
- Given radiation power limit, current, and beam energy, find minimum ρ for chicane

Beam-Beam Limit

- Defined by "tune shift" parameter

$$
\xi_{x}=-\frac{N_{S} \beta_{x W}}{\gamma_{W} \sigma_{x S}\left(\sigma_{x S}+\sigma_{y S}\right)} \frac{e^{2} Z_{S} Z_{W}}{8 \pi^{2} \epsilon_{0} m_{W} c^{2}}
$$

- W beam feels the force, S beam produces the force
- Electron and proton beam sizes the same
- Proton/ion beam-beam tune shift:

$$
\xi_{x, A}=\frac{N_{e}}{\epsilon_{n, A}\left(1+\sqrt{\beta_{y, A} / \beta_{x, A}}\right)} \frac{Z_{A}}{A_{A}} \frac{e^{2}}{8 \pi^{2} \epsilon_{0} m_{p} c^{2}}
$$

- Determines N_{e}, depends only on tune shift and normalized emittance for proton/ion beam
- Larger N_{e} allowed for ions

Beam-Beam Limit

- Electron beam tune shift determines proton beam current
- Strong radiation damping of electrons means electron beam-beam tune shift can be larger than protons
- Thus synchrotron radiation desirable at lower beam energies

Design Process

- Pick most challenging combination of required path length increase and electron beam energy
- Choose minimum arc radius at this energy based on synchrotron radiation limit. Use this radius for all bends.

Design Process

- Find angles ϵ and χ meeting constraints
- Beam crosses at centers of quadruopoles
$2 \rho_{\epsilon} \sin ^{2}(\epsilon / 2)+l_{\epsilon} \tan \epsilon=$

$$
2 \rho_{t} \sin [(\chi-\epsilon) / 2] \sin [(\chi+\epsilon) / 2]
$$

- Required path length difference:

$$
\begin{aligned}
2\left(\rho_{\epsilon} \epsilon-L_{\epsilon}\right)+ & 2 l_{\epsilon}(\sec \epsilon-1)+2\left[\rho_{t}(\epsilon+\chi)-L_{t}\right] \\
& +(n-1)\left(2 \rho_{\chi} \chi-L_{\chi}\right)+n l_{\chi}(\sec \chi-1)
\end{aligned}
$$

Design Process

- Different energies, path length corrections
- Adjust $\epsilon, \chi, \rho_{\epsilon}, \rho_{t}, \rho_{\chi}$
- Above constraints, plus L_{ϵ}, L_{t}, and L_{χ}

$$
\begin{gathered}
L_{\epsilon}=\rho_{\epsilon} \sin \epsilon \quad L_{t}=\rho_{t}(\sin \epsilon+\sin \chi) \\
L_{\chi}=2 \rho_{\chi} \sin \chi
\end{gathered}
$$

- Steer beam to end, tangent to axis
- Cross through quad centers with identical angles
- Reach desired path length

Lattice Considerations

- Need to dispersion match: requires $n \geq 3$ - For FODO: prefer internal DFD for $n=3$, DFFD for

$$
n=4
$$

- Lower beta functions give lower electron beam emittance
- Want short spacing between quadrupoles
- Instead of FODO, could use, e.g., triplets between bends
- Longer drift for magnets, means shorter bends: more synchrotron radiation, but more path length as well
- Only horizontal matters: asymmetric horizontal/vertical focusing
- Beam crosses quadrupoles with angle χ; would like to keep this angle small

Cases to Consider

- 20 GeV electrons on $100 \mathrm{GeV} / \mathrm{n}$ ions
- Required for gold
- 14 cm path legnth difference from 250 GeV protons
- Synchrotron radiation: minimum bend radius 340 m
- Electron current limited by synchrotron radiation in arcs ($1.1 \times 10^{11}, 360$ bunches)
- 5 GeV electrons on 50 GeV protons
- Largest path length increase required: 65 cm difference from 250 GeV protons
- 29 m minimum bend radius
- Electron current limited by proton/ion beam-beam tune shift (2.1×10^{11} per bunch)

Design Constraints

Space between dipoles 10 cm
Space for quadrupole 80 cm
Straight length 313 m
Available Straights
2

- Comptue radiation ignoring space between dipoles and excess path length

20 GeV electrons \& $100 \mathrm{GeV} / \mathrm{n}$ ions

- Use one or two straights; length per straight
- Displacements to correct $100 \mathrm{GeV} / \mathrm{n}$; larger for $50 \mathrm{GeV} / \mathrm{n}$
- Additional space required at ends for matching
- Large cell length: emittance growth

20 GeV electrons \& $100 \mathrm{GeV} / \mathrm{n}$ ions

- 5 crossings in two arcs about optimal
- Chicane is really too long
- Electron beam emittance growth
- Horizontal size will be huge
- I conclude is is impractical to use this chicane to correct 20 GeV electrons on $100 \mathrm{GeV} / \mathrm{n}$ ions
- Fundamental reason is radiation limitation

Alternatives to Chicane

- Only trying to correct difference between $100 \mathrm{GeV} / \mathrm{n}$ and $250 \mathrm{GeV} / \mathrm{n}: 14 \mathrm{~cm}$
- Moving magnets in electron arc
- Steering beam off axis in magnets
- Radiation and emittance issues if use electron ring
- Displacements larger than you might think
- Superconducting chicane in proton/ion ring
- Need relatively high fields (4-6 T)
- Need switchyard
- Magnet spacing will be an issue
- Use inner/outer rings for protons/ions

5 GeV Electrons \& 50 GeV Protons

- Assume some solutions exists to correct 100 GeV
- 51 cm remaining to correct
- Find solution adding 51 cm to straight-line path length for 5 GeV electrons
- Work at radiation per unit length limit
- Higher electron energies
- Increase minimum bend radius to match radiation per unit length limit
- Result is a minimum proton energy for which you can correct the path length

5 GeV Electrons \& 50 GeV Protons

5 GeV Electrons \& 50 GeV Protons

Straights
Overall length (m)
Maximum displacement (mm)
Crossings
Maximum crossing angle at quadrupole (mrad)

- Fill the straight(s): maximum energy loss, minimum horizontal size and angle at quadrupoles
- Could be shorter: less energy loss, wider magnets, larger angle at quadrupoles

Minimum Proton/CoM Energies

Conclusions

- Chicane with many axis crossings can correct path length
- Solution to lengthen 20 GeV electron beam to correct $250 \mathrm{GeV} / \mathrm{n}$ down to $100 \mathrm{GeV} / \mathrm{n}$ likely impractical
- Need an alternative for this last 14 cm
- Good solution correcting between $50 \mathrm{GeV} / \mathrm{n}$ and $100 \mathrm{GeV} / \mathrm{n}$
- Gives lots of radiation for low energy beam: good for electron beam-beam tune shift
- Compact cells, good for emittance
- Could be made shorter, with some tradeoffs

Next Steps, if Desired

- Details of quadrupole lattice in chicane
- Impact on emittance
- Dispersion correction
- Quadrupole aperture/radiation due to finite crossing angle in quads
- Study reducing remaining path length vs. chicane cost/performance
- Look at solutions for last 14 cm

Acknowledgements

- Original idea for a chicane came from Bob. His version crossed only once, had magnets that had to be repositioned for each energy.

