

Target Apertures and Beam Distributions

J. Scott Berg Brookhaven National Laboratory Energy Frontier Accelerator Group Meeting February 5, 2015

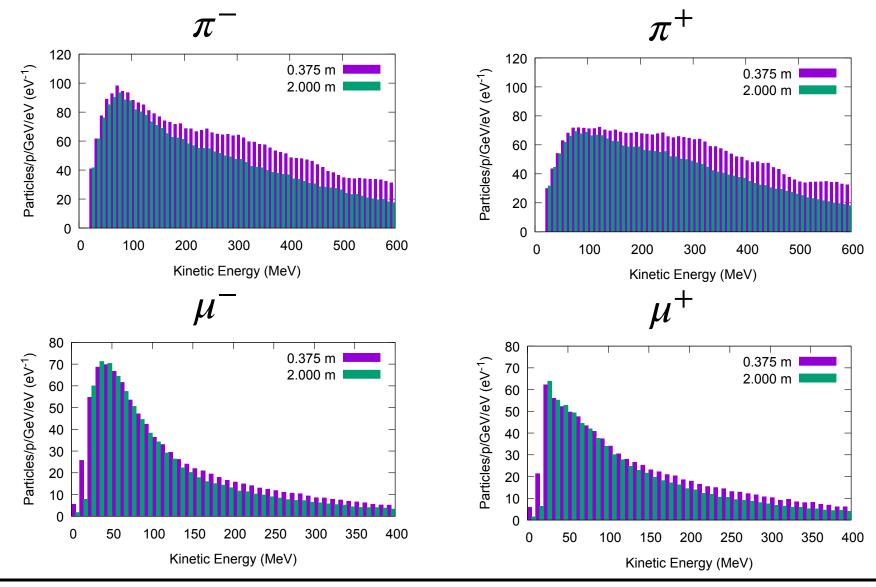
- Neuffer found significantly worse performance with C compared to Hg
 - Found larger emittance for C
- I looked at emittances at 3 m
 - Various Hg distributions had very different emittances
 - Neuffer used the one with the smallest emittance
 - Emittance with current configuration, current MARS similar to this one
 - C emittances were larger than Hg
 - C emittances worst with dump no tilt; with dump better with tilt

- New default for MARS event generator has significant impact on performance
 - Largest impact is total count reduction, less so on spectrum
 - Transverse emittances virtually unchanged
- C energy spectrum peaked at much higher energy than Hg
 - Overall production may be comparable to Hg
 - NBPR design likely very different for Hg and C
 - But Bob argued correctly that capturing flux at higher energies is likely more costly and less efficient
 - C with dump no tilt has significantly worse production

- With current Hg target configuration, examine emittances at 3 m in two ways
 - Receive from MARS at 0.375 m, propagate in ICOOL to 3 m
 - Receive from MARS at 2.0 m, propagate in ICOOL to 3 m

	μ^-+	$\mu^$	μ^++	μ^+-	π^-+	$\pi^$	π^++	π^+-
0.375	45.4	16.8	51.1	19.7	35.5	21.5	36.4	22.8
2.000	30.7	13.4	35.2	15.1	21.0	14.4	21.9	15.1

• Next, do ICOOL propagations without pion decays, and look at pion emittances of pions common to both runs


- Results similar to propagation from 2 m
- Conclusion: particles lost on object in MARS
- Further analysis: square root taper aperture, starting at a radius of 7.5 cm at z = 0.375 m, growing to 30 cm at z ≈ 19 m

- Energy spectra have differences as well
- Pions weighted to higher energies
 Still not to the degree that carbon is
- More low energy muons, presumably from low energy pions that have already decayed

Distributions vs. Handoff Point

- 13 cm aperture around target to 1.7 m, vs, 7.5 cm to 37.5 cm for Hg
- No apertures (other than solenoids and sheilding) beyond that for C
- Likely reason for (or at least contribution to) larger emittances from C
- May also be contributing cause to higher energy spectral peak
- Neuffer finds many of the high emittance particles are lost, but higher final field would hang onto more of them

- I think we understand reasons for
 - Differences between emittances for various Hg runs
 - Some of differences between C and Hg emittances and spectra
- Apertures in Hg case cutting off particles
 - Apertures were set for long taper
 - Apertures unnecessarily small for warm solenoids
 - Hisham's runs likely different because he removed apertures (?)

- Next: run both Hg and C (tilt no dump) with the following apertures (runs are complete, awaiting analysis)
 - 13 cm inner radius to 85 cm
 - 23 cm inner radius beyond that
- These apertures enclose all solenoids
- Use these as our reference distributions for now
- Comments from Kirk McDonald
 - I was probably not starting from standard input files
 - Could have had graphical output which would have helped