

Beam Emittance at 3 m for Hg and C Targets

J. Scott Berg Brookhaven National Laboratory Energy Frontier Accelerator Group Meeting January 9, 2015

- Neuffer's talk at the MAP 2014 Winter Meeting, Dec. 4, 2014 (next 3 slides)
- Compared results from 8 GeV beam on Hg target to 6.75 GeV beam on C target
- C target had larger emittance by over a factor of 2
- Large increase in loss in first 6 m
- Performance reduction by about a factor of 2

Motivation—Neuffer's Results

NATIONAL LABORATORY

Motivation—Neuffer's Results

Motivation—Neuffer's Results

- > Much worse than previous 8 GeV p / Hg target
- > 6.75 (~25% less), Hg → C ...
 - but initial beam has very large phase space
- > Causes for early losses ???
 - Long C target not a good match to short taper ?
 - target should be within lens center ...
 - "Beam dump" after target blows up π beam ??
- > Bugs, errors?
 - Changes in Mars production code ??
 - normalization error ??
 - initialization errors
 - starts from z=2m rather than z=0
- After initial factor of 2 loss, very similar to old front end case
 - not yet reoptimized
- To investigate/debug/reoptimize ...

Examine Distributions

- Dug up every 8 GeV Hg in 20 T distribution I could find
 - 28-Oct-2010 https://pubweb.bnl.gov/~kirk/Target_ Studies/Icool_for003_decks/
 - From "P11" direction
 - Used by Neuffer
 - 23-Mar-2013, from X. Ding
 - Target angle 137.6 mrad, radius 0.404 cm.
 - RMS beam size 0.1212 cm
 - MARS15(2012)
 - 06-Feb-2014, from H. Sayed
 - Distributions all 0.375 m from field peak

- Carbon distributions from X. Ding, 15-Dec-2014
 - 6.75 GeV, target 1 cm radius, beam 0.25 cm RMS, no crossing angle
 - Tilted 65 mrad, or not
 - 1.2 m dump, radius 3 cm, or not
 - Proton beam emittance 5 or 20 μ m
 - Distributions 2 m from field peak

- Propagate all distributions to 3 m downstream from field peak
- Use field map from Weggel, 09-May-2014
 - \circ Carbon distributions used this to 2 m $\,$
 - Field very close to 20 T at 0.375 m; little impact of profile difference for Hg runs
- Compute vector potential at 3 m to compute canonical emittances
- Compute emittances
 - π KE 60–600 MeV, μ KE 60–400 MeV; energy range at target in which 99% of ultimately captured particles lie
 - 4σ iterative cut

Emittances

	μ^-+	$\mu^$	μ^++	μ^+-	π^-+	π^- -	π^++	π^+-
101028	31.8	31.1	35.6	13.7	23.1	14.9	26.0	15.0
130323-XDing	41.2	16.4	43.8	17.2	33.1	21.4	32.8	21.2
140206-HSayed	44.2	25.0	44.2	25.0	33.8	31.9	32.6	31.0
141215-XDing-00-d	68.1	24.9	68.3	27.2	48.9	32.7	47.8	33.7
141215-XDing-00-n	49.8	22.7	51.2	24.6	35.1	27.1	35.3	28.3
141215-XDing-65-d	58.1	21.4	60.2	23.2	43.6	26.7	43.3	27.9
141215-XDing-65-n	51.5	22.1	52.7	23.9	36.5	26.0	36.6	27.4

- Normalized canonical emittances in mm
- Large sign is sort of helicity
- Difference in emittances is angular momentum
- Names to left are distributions, contain date
 Carbon: two digit angle, d for dump, n for no dump

Analysis

- Hg distributions
 - 2010 emittances significantly smaller than later runs
 - 2014 run has tiny pion angular momentum
 - Small beam; beam/target interact over small region?
 - Also shows up in muon angular momentum
- Carbon distributions
 - Removing dump improves emittance
 - With dump, lower emittance with tilt
 - Without dump tilt makes emittance a tiny bit worse
 - Proton beam emittance didn't matter (not shown)
- Similar behaviors for centroid
 - Centroid at origin for target without tilt
 - Offsets small: little contribution to emittance

Centroid Position

	– Charge				+ Charge			
	x	p_x	У	p_y	x	p_x	У	p_y
	(mm)	(MeV/c)	(mm)	(MeV/c)	(mm)	(MeV/c)	(mm)	(MeV/c)
101028 π	2.0	0.0	1.5	0.7	-4.8	0.6	-1.4	-3.6
101028 µ	1.5	0.9	0.7	-1.5	-6.0	-0.8	-1.1	-4.7
130323-XDing π	6.3	6.3	7.5	-4.8	-9.3	-6.8	7.6	-6.8
130323-XDing <i>µ</i>	6.1	7.1	9.2	-3.8	-9.3	-7.2	9.3	-5.9
140206-HSayed π	7.9	10.1	11.1	-5.7	-10.4	-10.5	11.5	-7.6
140206-HSayed μ	-7.9	11.2	14.3	-5.3	-10.7	-11.2	13.4	-5.9
141215-XDing-00-d π	0.0	0.0	0.3	0.1	0.1	-0.1	0.2	0.2
141215-XDing-00-d μ	0.0	0.6	0.0	0.2	0.2	0.0	0.0	0.4
141215-XDing-00-n π	0.0	0.0	0.0	-0.2	0.0	0.0	-0.2	0.0
141215-XDing-00-n μ	0.0	0.0	0.0	-0.4	-0.1	0.0	-0.2	0.0
141215-XDing-65-d π	0.0	5.3	7.1	-0.7	-8.8	-5.7	6.1	-6.4
141215-XDing-65-d μ	3.0	11.2	15.8	-0.6	-8.4	-10.1	13.3	-5.3
141215-XDing-65-n π	3.1	8.3	10.3	-10.9	-8.1	-8.7	9.7	-5.2
141215-XDing-65-n μ	3.0	10.5	14.1	-0.9	-7.6	-10.0	12.6	-4.6

- Reasons for differences in Hg distributions unknown
 Neuffer used the earliest, with the smallest emittance
- C emittances larger than Hg
 - Dump makes worse, tilt improves with dump
 - Cause unknown: larger target?
- Don't see Neuffer's scale of difference, but may be result of different analyses
- More detailed analysis possible, should discuss if desirable
 - Understanding root cause would involve studies in MARS