

Dogbone RLA Design

J. Scott Berg Brookhaven National Laboratory Muon Accelerator Group Meeting 12 June 2014

- Quick introduction
- Beam loading
- Droplet arc design
- Longitudinal emittance growth
- Machine designs
- Conclusions

- Accelerate from 5 to 63 GeV
- Use dogbone RLA
- Tolerate 10% emittance growth (original spec: 6%)

\overline{N}	2×10^{12}	4×10^{12}	2×10^{12}
ϵ_{\parallel} (mm)	1.5	1.5	70

Beam Loading

- No time to top of RF: run on stored energy
- Can tolerate $\approx 30\%$ voltage reduction

Passes	$\Delta V/V~(\%)$				
	325 MHz	650 MHz			
3	5	16			
5	8	26			
7	11	36			
9	15	47			

- 9 passes fine at 325 MHz (switchyard limited)
- 3 passes fine at 650 MHz, 5 passes marginal

Droplet Arc Design

• Sequence: match, bend out, dispersion flip, bend in

- All cells $\pi/2$ phase advance
- $n_i = 5n_o + 8$, $L_m \approx L$, and $\theta_m \approx \theta \approx \pi/(3n_o + 6)$
- Longitudinal behavior determined by n_o and average bend field $T_1 \equiv \frac{dT}{dE} \approx \frac{7L\theta^2(7n_o + 9)}{16pc^2} \approx \frac{7\pi^3(7n_o + 9)}{432(n_o + 2)^3qBc^2}$

- Based on nonlinear ellipse distortion
 - Assumes full filamentation, less for partial filamentation
 - Lowest order, possibly worse with higher order

$$\frac{\Delta\epsilon}{\epsilon} = \frac{5}{48} \frac{U^2 \omega^4 T_1^3 \epsilon}{\mu^2 \sin^3 \mu} \frac{\langle J^2 \rangle}{\epsilon^2} \quad 2\sin\frac{\mu}{2} = \sqrt{T_1 U \omega} \tan\phi$$

- Design energy gain U per pass, RF phase ϕ
- Worse at higher RF frequencies, larger T_1
- Prefer larger values of $\mu^2 \sin^3 \mu$
 - $\sin \mu$ and $\sin(\mu/2)$ arise from lumped RF
 - $\mu^2 \sin^3 \mu < 3.06$, reached when $\mu \approx 1.91$
 - RF bucket edges break up when $\mu > 1$

Machine Design

- Choose $\mu \approx 1.91$
- Make arc cell lengths in first pass similar to minimum linac cell length
 - Keep linac-to-arc match smooth
 - Arc cells will need to be longer in reality
 - Large initial energy gain: can't have $\pi/2$ phase advance at end of first linac pass
 - Quad lengths not counted in linac cell lengths

$\overline{f_{\mathrm{RF}}}$	ϕ	n _o	B	$L_{\rm arc}$	$L_{\rm lin}$	G
(MHz)	(deg.)		(T)	(km)	(km)	(MV/m)
325	25	12	0.44	16.6	0.9	2.5
650	22	24	0.68	2.5	1.6	8.4

Conclusions

- Longitudinal dynamics: 325 MHz worse than 650 MHz
- 650 MHz looks acceptable, but:
 - Requires long arcs, with lots of cells (184!)
 - Large energy gain in first linac pass will require longer arc cells
 - Betatron phase advance less than $\pi/2$ at end first pass
 - Longer $\pi/2$ arc cells to match beta functions
- Racetrack geometry is likely better
 - Limited by longitudinal phase advance per pass
 - Downside is more complex switchyard
- Check if emittance growth calculations are pessimistic for small number of passes