

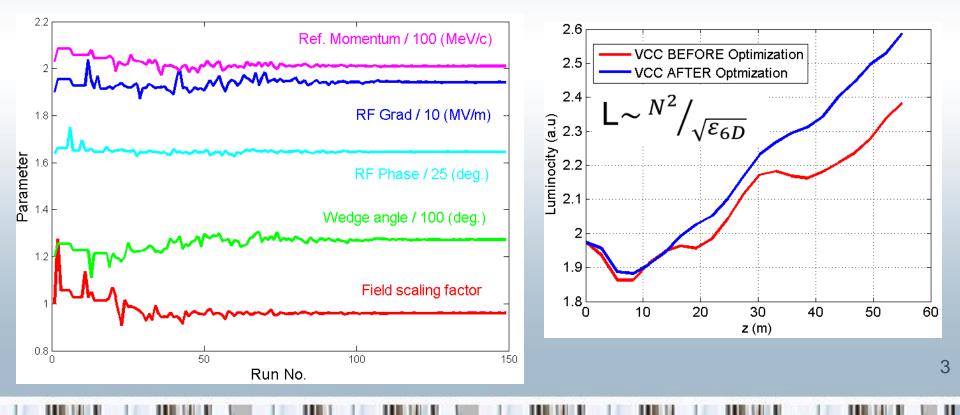
A complete 6D cooling channel for a Muon Collider

Diktys Stratakis, Brookhaven National Laboratory

Vacuum RF Meeting 3

May 13, 2014

6D Vacuum RF Cooling Channel Concept: Generate dispersion and cool Incident Muon Beam via emittance exchange in a wedge absorber Evacuated **Dipole Magnet** Δp/p Proposed solution: Rectilinear channel with tilted alternating solenoids and wedge absorbers Wedge Absorber Tapered channel: The cavities absorber coil TOP VIEW focusing field becomes progressively stronger to reduce the equilibrium

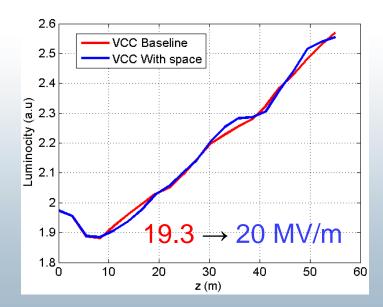

D. Stratakis et al., Phys. Rev. ST AB 16, 091001 (2013)

SIDE VIEW

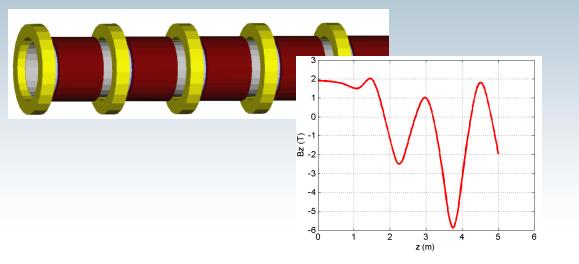
emittance.

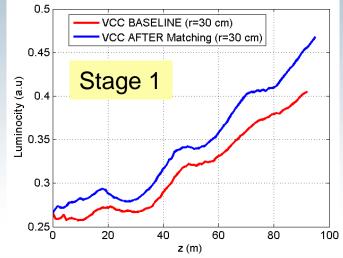
Multivariable Optimization for 6D

- Nelder-Mead algorithm
- Integrated in NERSC with ICOOL-MPI
- Applied for VCC optimization (Stg 1): 8 parameters

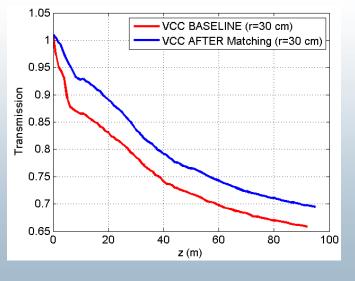


Lattice Space (Stg. 1)


• Space generated for:

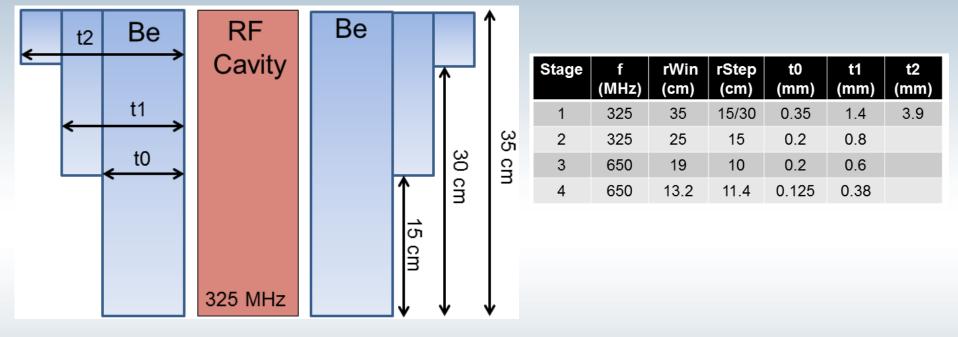

- Diagnostics, separate cryostats
- Remove two rf after 4 cells

Parameter	Baseline	With Space
Cool rate (trans.)	1.49	1.49
Cool rate (long.)	1.30	1.35
Transmission	87.2%	86.4%


Matching from Phase-Rot. To 6D

- 9 matching coils, in 9, 75 cm cells
- Objective: Maximize luminosity
- New channel has 30 cm aperture

Parameter	Baseline	With Matching
Cool rate (trans.)	2.13	2.19
Cool rate (long.)	2.76	2.81
Transmission	65.2%	68.8%

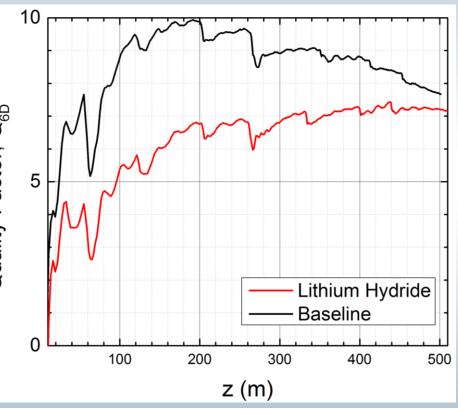


Wedges vs. Cylinders

- Liquid Hydrogen absorbers:
 - Wedges vs. cylinders
- Optimized for performance

Parameter	Baseline	With Space
Cool rate (trans.)		
Cool rate (long.)		
Transmission		

Be Windows Simulation Model


 Stepped Be window: All stages have two steps, except Stg 1 which has three
Parameter
Baseline
With Be

Channel before merge,	Cool
ONLY!	Cool

Parameter	Baseline	With Be
Cool rate (trans.)	11.90	10.87
Cool rate (long.)	20.83	17.85
Transmission	51.9%	49.3%

Lithium Hydride Absorbers

- Post-Merger has 8 stages
- Two alternative cases:
 - First 4 stages with liquid hydrogen σ^{a} (LH) and last 4 with Lithium Quality Factor, Hydride (LiH)
 - All stages with LiH
- Quality factor, Q is used for lattice evaluation
- Both lattices reach MAP goal for the emittances

Summary

- Matcher into 6D has designed
- Matches from a constant 2T
- Now aperture 35 cm \rightarrow 30 cm.
- Now use optimizer to tune Stage 1: Pref, Grad, phase, etc...
- Same concept can be used for matching from Bunch Merger to Post 6D