

A complete 6D beam cooling scheme for a Muon Collider

Diktys Stratakis Brookhaven National Laboratory

APS April Meeting, Savannah, GA

April 07, 2014

Outline

- Introduction to Muon Collider
- Challenge: Ionization cooling
- Design & simulation of a 6D cooling channel for a Muon Collider
- Review key lattice parameters
 - Required rf cavity frequency, voltage, B-field, absorber length
- Technology challenges
- Conclusion

Muon Collider

- A path to energy-frontier with muons
 - Radiative processes are far from limiting (as for electrons)
 - Can build a compact, high-energy, circular accelerator

Ρ

Ρ

VLHC d=74km

3

• Muon beams are produced as tertiary beams: $p \rightarrow \pi \rightarrow \mu$

Technical Challenges

- Muon beam is "born" with high emittance
- Cooler beams would allow fewer muons for a given luminosity
 - Reducing experimental background
 - Reducing radiation from muon decays
 - Allowing smaller apertures in machine elements and so driving the cost down
 - BUT, muons decay fast (2 µs at rest) so any beam manipulation has to be done quickly
- GOAL: Produce a high-intensity muon beam whose 6D phase-space is reduced by 10⁶ from its value at the target.

Ionization Cooling

6D Vacuum Cooling Channel (VCC)

Cooling channel conceptual design

Channel consist of 8 different stages

z-pz Overall performance

Parameters	Begin (2)	End (5)
Emittance, Transv. (mm)	17.38	0.28
Emittance, Long. (mm)	48.67	1.55
Transmission with decays	100%	18%

150

-20

20

time (ns)

Magnet Feasibility e.g. Last Stage —■— Nb₃Sn, 4.2 K 0.4 absorber 650 MHz coils cavities to tape plane, 4.2 K 0.3 1000 -∎— Nb-Ti, 1.9 K 0.2--D- 6D Cool (After merger) (Ξ) ^{0.1} Σ 0.0

-0.1

-0.2 ·

-0.4

0.0

0.2

0.4

z (m)

Here Something from Franck? Here Something from Holger?

0.6

0.8

Magnet requirements within Nb-Ti and Nb₃Sn limits?

9

Vacuum RF Feasibility

- Significant improvement over the original 805 MHz pillbox cavity
 - Operated in magnet: ~ 25 MV/m at B=0, 3 T
 - Re-run with RF pickup
 - Confirmed B=0 data
 - \sim 20-22 MV/m to 5T
 - Below the needed 28 MV/m

Summary

- We defined a concept for 6D cooling based on a rectilinear channel
- We specified the required magnets, cavities and absorbers for the cooling channel before & after the merger.
- Main challenges:
 - Operation of high-gradient rf cavities in multi-Tesla magnetic fields
 - Demand of coils with peak field near 15 T
- We are working closely with the technology development group to address those issues

