

Analysis of Balbekov Stage 1

J. Scott Berg Brookhaven National Laboratory Muon Accelerator Group Meeting 31 October 2013

Balbekov Stage 1

Everything to make the lattice:

Cell length (cm)200Coil length (cm)50Coil inner raius (cm)45Coil thickness (cm)10Coil tilt (mrad)60Current density (A/mm²)48.3

- Diktys made field map; compare to Balbekov
- To eye, fields on axis agree
- Beta functions agree passably

- Use Balbekov's distribution
- Transmission is awful with Balbekov's wedge (30 mm to vertex)
 - $\epsilon_{\perp} = 4.1 \text{ mm}, \epsilon_{\parallel} = 71 \text{ mm}$ (!), transmission 4%
 - Best performance with very high reference momenta
- Diktys found better performance with 10 mm to vertex
- I found best at 14 mm to vertex (parameter scanning)

• $\epsilon_{\perp} = 6.1 \text{ mm}, \epsilon_{\parallel} = 9.4 \text{ mm}, \text{ transmission } 74\%$

- Nothing approaching Balbekov
 - $\epsilon_{\perp} \approx 4 \text{ mm}, \epsilon_{\parallel} \approx 7 \text{ mm}, \text{transmission} \approx 88\%$

Analysis

- Found 6-D fixed point with Balbekov, wedge 30 mm to vertex
 - Adjusted to get fixed point at 200 MeV/c
- Longitudinal eigenvalues were unstable
 - True with or without Al window on absorber
 - Improved somewhat when I removed the Al window, but still unstable
 - No Be windows on cavities in Diktys' simulation

Theory

- Ignore synchrotron oscillation, treat wedge as thin and a perturbation
- Transverse and longitudinal eigenvalue magnitude differences from 1

$$\frac{g(E)E}{2p^2c^2}(-L+2n_W D\tan\theta)$$
$$-\frac{1}{2}g'(E)L - \frac{g(E)E}{2p^2c^2}2n_W D\tan\theta$$

- g is dE/dx (value is positive)
- *D* is the dispersion
- L is the total absorber length (seen on the closed orbit)
- n_W is the number of wedges, θ is half vertex angle

- At 200 MeV/c, g = 31 MV/m, g' = -0.051 m⁻¹
- 200 MeV/c closed orbit is at -7.9 cm
 - L totals 55 cm for both absorbers
 - Dispersion is -11.5 cm
- Results
 - Transverse, without coupling: -0.04834
 - Longitudinal, without coupling: +0.01399
 - Coupling term: +0.01469
 - Transverse with coupling: -0.03364
 - Longitudinal with coupling: -0.00070
- Simulated:
 - Transverse: -0.03660 and -0.04403
 - Longitudinal: +0.00042

Summary

- With Balbekov's lattices, poor performance
 - Looks like longitudinal instability
- Adjusting wedge position improves, but never as good as Balbekov (with his distribution)
- Eigenvalues for his wedge unstable
- Consistent with theory to within approximations
 - Didn't stabilize longitudinal enough
 - Thin wedges, no synchrotron oscillations can explain few percent deviation
- Theory shows why moving wedge helps: coupling increases relative to loss, stabilizing longitudinal

- Updated from recent cavity optimizations
- Shortened from before

			ΔE	ΔE
Freq.	Length	Grad	v = c	200 MeV/c
MHz	cm	MV/m	MeV	MeV
325	24	22	4.71	4.56
650	12	31	3.32	3.21
975	8	38	2.71	2.63

NATIONAL LABORATORY