

4-D Behavior of Balbekov Lattice

J. Scott Berg Brookhaven National Laboratory Muon Accelerator Group Meeting 16 May 2013

Motivation

- Understanding performance of Balbekov Ring
- Why performance worse with distribution centered at 210 MeV/c compared with 218 MeV/c
 - 210 MeV/*c* appears to be better for momentum acceptance
 - May be issues with missing longitudinal-transverse correlation in initial distribution

0.9

0.8

0.7

Tunes

0.6 0.5 160 170 180 190 200 210 220 230 240 250 Momentum (MeV/c)

Transmission

Transverse Emittance

Longitudinal Emittance

Longitudinal Momentum

Analysis

- With each distribution, optimized
 - Longitudinal aspect ratio (fixed longitudinal emittance)
 - Cavity timing (ICOOL reference momentum)
 - RF phase
- Optimized for transmission
- Transmission worse at 210 MeV/c than 220 MeV/c
- Similar emittances for both
- Longitudinal oscillation
 - Initial mismatch arising from missing longitudinal-transverse correlation
 - Can eliminate oscillation (but still mismatch), but not optimal

- Examine dynamic aperture over momentum range
- Reduction near integer resonance expected
- Hole near 210 MeV/c
- Around 2/3, but not exactly
- Dynamic apertures not very large in general
- Need to analyze more
 - Determine cause of the loss near 210 MeV/c
 - Compare to RFOFO

LABORATORY

NAL

Dynamic Aperture

MAL

LABORATORY

Dynamic Aperture

LABORATORY

231 MeV/c

- Find closed orbit at each momentum
- Find linear map M about closed orbit
- Find matrix A (for stable momenta) such that

$$MA = AR \qquad R = \begin{bmatrix} \lambda_1 R_1 & 0 \\ 0 & \lambda_2 R_2 \end{bmatrix}$$
$$R_k = \begin{bmatrix} \cos 2\pi v_k & \sin 2\pi v_k \\ -\sin 2\pi v_k & \cos 2\pi v_k \end{bmatrix}$$

- If *M* symplectic:
 - A can be chosen to be symplectic

•
$$\lambda_k = 1$$

Math

• Columns of *A*

- For each k: scale a_{kR} and a_{kI} by same factor, and possibly change sign of a_{kI} so that $a_{1R}^T J a_{1I} = 1$
 - Sign change in a_{kI} requires sign change in v_k
 - Eliminates sign ambiguity in tunes

Math

- Avoid swapping 1 and 2 as you vary parameter (momentum):
 - Swap 1 and 2 so that $A_i^T J A_j \approx J$ where A_i and A_{i+1} are nearby parameter values
 - Choose "horizontal" and "vertical" with $A_0 = I$
- Dynamic aperture
 - Launch particles with coordinates $\sqrt{2J_k}a_{kR}$
 - Dynamic aperture is largest J such that nothing lost for $J_1 + J_2 \leqslant J$
 - Emittance would be average of J_k over distribution