

Design and simulation of a postmerging Guggenheim for a Muon Collider

BROOK

1

Diktys Stratakis Brookhaven National Laboratory

AAG Group Meeting March 28, 2012

History (1)

- Bob has simulated this channel (in 17 stages) but:
 - It was a 2D simulation
 - It used not "realistic" current densities at the last stages
 - My simulation showed space-charge effects at last stages

History (2)

- A full 3D simulation is need that will include the constraints discussed earlier.
- Rick has simulated the first 11 stages
- However, there were some issues:
 - Transmission
 - Lenght
 - Low statistics
 - Most important not complete because transverse emittance was 3 times higher to the baseline value (~0.250 mm)

Outline

- I will show a full 3D simulation of the post-merging Guggenheim
 - I started from scratch (independent from Rick's numbers)
 - Simulated the first 13 stages
 - I use high statistics ~100,000 particles
 - I achieve reasonable transmission and the channel length is reasonable
 - Current densities of coils below critical values
- Work is far from complete. Study is in progress...

Lattice Details

- Each stage is a ring with 12 cells
- Radius falls because cell length decreases
- Coils are tilted to generate dispersion
- LH wedges for cooling
- Opening angle 98 121 degrees.

Lattice Design (1)

Lattice Design (2)

Critical Engineering Current Density

Particle Tracking (13 Stages)

Transverse Cooling

Cautions on lattice design (not done so far)

Most stages need to be checked for element overlap

Wedge intersects coil

Conclusions and Outlook

- The desired values from Bob are ϵ_{long} =2 and ϵ_{perp} =0.25 mm.
- Most likely 4-5 additional stages are needed to reach the desired values.
- There are some matching issues. Especially for stages where the frequency changes.
- Element overlap check (hard to see in ICOOL). It is possible that cavities, tilted coils and absorbers intersect.
- The plan is to cross-check with G4BL (some stages)
- So work is in progress...

Space-Charge effects for $\epsilon_l=1 \text{ mm}$ (Stg. 7)

