

Half Flip 6D Lattice

R. B. Palmer, Rick Fernow (BNL)

Thursday

2/14/13

- Introduction
- lattice types
- Parameters of Half-Flip lattices
- ICOOL simulation using matrices
- Conclusion

Cooling Scheme

RFOFO Flip

Non-Flip

Rick: this has no stable orbits, unless very little bending

Half Flip

- Without bending all cells have identical focusing ($\propto B^2$)
- With bending (Guggenheim), or coil tilting (Balbakov) the symmetry is broken and a resonance exists in the center of the pass band
- But the coil tilts are very small and this resonance may not be too bad

- locations and dimensions are symmetric left-right in each cell
- currents are reversed left-right in each cell
- when there are two lines for one file, there are two coils per half cell

j vs B for required 3 cm betas

- Half flip design uses less fields on coils than Non-flip but its cells are longer
- They are now ok for both Nb₃Sn and YBCO in the bas direction
- In addition, the field lines are more axial than in the flip lattice

j vs B extended to lower betas

- Half flip solution probably ok to 1.6 cm with longer cells
- \bullet This should cool to 150 $\mu{\rm m}$ for the enhanced performance goal

ICOOL using matrices for half-flip with longer cells

- Performance should be a little better with shorter cells
- And this has not been optimized yet

Conclusion

				ϵ_{\perp} =240 μ m				$\epsilon_{\perp}{=}150~\mu{ m m}$		
case	files		Len	ϵ_{\parallel}	Trnsm.	%	Len	ϵ_{\parallel}	Trnsm.	%
1	tap16a0	RFOFO	470	2.1	47.3					
3	tap16a5v	Non-flips	375	2.1	53.7		471	2.15	46.2	
3	tap16a5x	Half flips	410	1.98	46.2		510	1.91	31.6	

- Half-Flip lattice meets current density requirements
- And meets minimum cooling requirements (240 μ m)
 - $-\operatorname{More}$ losses than Non-Flip
 - $-\operatorname{But}$ about the same as original RFOFO Flip lattices
- \bullet Even meets extended cooling requirement (150 μ m)
 - $-\operatorname{But}$ with more losses than Non-Flip
- But may have additional losses from resonance in center of acceptance if bending one way
- Rick: Simple coil tilts did not give enough dispersion
 - Perhaps the Valeri Balbakov version would allow more flexibility in the generation of dispersion
- Needs real simulation with/without Balbakov modification