

1

New Baseline for a Neutrino Factory Front-End

Diktys Stratakis

Physics Department Brookhaven National Laboratory

> AAG Group Meeting October 03, 2012

Outline

- Define new baseline parameters for a NF Front-End
 - Include engineering constrains
- Simulate & benchmark the concept:
 - G4Beamline and ICOOL
- Study low B-Field options
 - Two options: (1) Radial, (2) Longitudinal bucked coils
- Conclusion & Outlook

Motivation

- Recent engineering studies suggest to:
 - Increase the gap between coils in buncher & rotator
 - Increase cooler cell length from 0.75 m to 0.86 m
 - Have one "empty" cell after a series of cavities

Solution: Redesign a new cooler

New Baseline (NBL) Parameters (1)

New Baseline (NBL) Parameters (2)

	Length [m]	Number of cavities	Frequencies [MHz]	Number of frequencies	Peak gradient [MV/m]
Capture	18.9				
Drift	60.7				
Buncher	33.0	33	319.6 to 233.6	13	3.4 to 9.7
Rotator	42.0	56	230.2 to 202.3	15	13
Cooler	>97.5	130	201.25	1	16
TOTAL	>252	219	319.6 to 201.25	29	
√ √ ~160 m ~140 ~160 m					

....

NF front-end Benchmarking (1)

• Simulation with ICOOL (3.28) and G4BL (2.12) [40K particles]

NF front-end Benchmarking (2)

- The μ/p rate is within $A_T < 30$ mm, $A_L < 150$ mm and cut in momentum 100<Pz<300 MeV/c

Alternative Cooling Options

- Two schemes that would lower the field inside the rf cavities are examined
- Case 1: Radial Bucked Coil Scheme (RBC)
 - Field in rf is less than a Tesla
- Case 2: Longitudinal Bucked Coil Scheme (LBC)
 - Achieves lower B-field than RBC
 - Tight space between coils and rf
 - High hoop stress

Radial Bucked Coil Scheme

Simulation Results (1)

Simulation Results (2)

Summary & Outlook

- Defined new baseline parameters which includes the engineering constrains
- Simulated with G4BL & ICOOL
- Our proposed new baseline:
 - Has a longer cooler by ~ 60 m
 - Has 140 cavities instead of 130
 - Performance is reduced by 5-10%
- Examined low B-fields FE options: One with Radial and one with Longitudinal bucked coils
- After IDS: Write a report + Journal Paper