# MUON TARGET STUDIES: TAPERED CAPTURE SOLENOID

HISHAM KAMAL SAYED BROOKHAVEN NATIONAL LABORATORY



# MARS SIMULATION SETUP

- Beam Pipe with constant R=30 cm (eliminate particle loss due to scrapping)
- Beam Pipe material changed to balckhole to speed calculations
- Added subroutine to m1510.f (FIELD) to calculate the field using inverse cubic equations
- Store particles information at z=0
- Select (μ<sup>+</sup> & π<sup>+</sup>)





# MARS SIMULATION RESULTS

## Muons+Pions count at z=50 m with K.E. 80-140 MeV



3 BROOKHAVEN

# MUON COUNT AT END OF "FRONTEND"

# Muons within required acceleration acceptance cuts

- 0.1 <Pz< 0.3 GeV
- Transverse cut R < 0.3 m
- Longitudinal cut 0.15 m





# TRANSMISSION THROUGH FRONT END

### Pz & Σ cut

### Trans, Pz, & Σ cut







- 1- Taper solenoid field: 20 --> 1.5 T over 15 m
- 2- ICOOL applied aperture for decay region R\_aperture= 0.4 m & 0.3 afterwords
- 3- Good particles are those who satisfy the following conditions/cuts
  - 1- Survived the phase rotator and cooling sections
  - 2- Fall within required acceleration acceptance cuts
    - 0.1 <Pz< 0.3 GeV
    - Transverse cut R < 0.3 m
    - Longitudinal cut 0.15 m



### Particle radii distribution Ltaper=15



- 15 T peak field case has ~ 7% less yield at end of cooling though it produces about the same number of muons at the target.
- > No clear mismatch in the lattice that shows huge particle loss

| Taper Length | End of Decay<br>Channel z=50 m<br>No cuts | End of FE z=265 m<br>Eclac acceleration<br>acceptance cuts |
|--------------|-------------------------------------------|------------------------------------------------------------|
| Short        |                                           | Better                                                     |
| Long         | Better                                    |                                                            |



## DISTRIBUTIONS OF PARTICLES SURVIVED THE FRONT END AND ACCELERATION CUTS

#### Particle radii distribution Ltaper=15



## DISTRIBUTIONS OF PARTICLES SURVIVED THE FRONT END AND ACCELERATION CUTS

#### Particle radii distribution Ltaper=22 m



## DISTRIBUTIONS OF PARTICLES SURVIVED THE FRONT END AND ACCELERATION CUTS

### Particle radii distribution Ltaper=36

