

IDS-NF Plenary Meeting EMMA Run 22–25 April

J. Scott Berg Physics Department Brookhaven National Laboratory

Advanced Accelerator Group Meeting May 9, 2012

IDS-NF Plenary

- Change in baseline due to large θ_{13}
- Updates on various subsystems
- Discussion of baseline changes
- Cost review

Large θ_{13}

- Daya Bay: $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \pm 0.005$
- Original neutrino factory energy was 25 GeV
- Ideal muon energy about 10 GeV
 - Could go lower, but concern over detector thresholds
 - Accelerate only to 10 GeV
 - Consider RLA-only and Linac-RLA-FFAG Scenario
 - I did a first pass design: see no cost benefit
 - New decay ring

Updates on Subsystems

- Proton driver
 - Low emittance seems within reach
 - Some designs can live with fewer bunches (Fermilab)
- New target solenoid configuration
- Front end
 - Chicane in front end
 - Unclear whether a second absorber will be needed
 - Engineering couldn't fit everything in space allotted (cooling)

Updates on Subsystems

Updates on Subsystems

- Updated linac/RLA designs
- FFAG
 - Need to work on getting tracking right
 - Will publish FFAG even though it was dropped
- Decay ring
 - Have injection design, optimize timing and kicker location
 - Designing for lower energy

Baseline Changes

- Take a fixed point for the target solenoid config by Sep. 1
 - In paritcular, look at 15 T
- Front end
 - Look at consequences of engineering constraints
 - End June, review options for new baseline
 - Bucked coils
 - Shielded

Cost Review

- Have most components for a full system cost
- Significantly more expensive than Study II!
- Key missing items
 - Not enough RF power in cooling (!)
 - Some magnets missing in RLAs

IDS-NF Cost Pie

Proton Driver

IDS-NF Acceleration Cost Pie

• We now have EPICS readout of injection line BPMs

- Beam steered through magnet centers and center of BPM 4: could not find a septum setting where we observed beam at first EMMA BPM
 - Difficult to verify steering through last leg
 - Good injection with beam at +3 mm in BPM 4
 - Required mis-steering by bend and H corrector

IDS-NF Acceleration Cost Pie

- Clive Hill making drawings of septum at range extremes
- Little room to increase septum rotation angle
- Measured dispersion at YAG 1
 Use to look for ALICE energy drift
- Problems with slit
 - Could give beam distribution, position, dispersion, etc.
 - Couldn't get any beam through
 - Problem is design: slit only goes to pipe center (almost)
 - Straightforward to extend additional 2 cm
 - Effort more of a cost issue than parts

IDS-NF Acceleration Cost Pie

- Wall current monitor
 - Two uses: trigger and measure current
 - Used for measure of injection efficiency, comparing with WCM in EMMA ring
 - Triggering problems
 - High freuqency noise generated by kicker pulses obscures signal
 - Alex mitigated by increasing signal amplitude (split off to fewer places)
 - Appears on raw IL BPM signal as well
 - One attempt to reduce noise had no effect
 - Does this affect accuracy of measured current?
 - Compare with kicker on and off

BPM Cards

- Some BPM cards fail to record data on some shots
- Attenutaion setting has some effect
- Tested one turn, almost all cards trigger
- For multiple turns, majority of cards fail to trigger
- Hope to have engineer who designed digital cards look at this during EMMA run (?)
- Make one extraction kicker available to help debug (change number of turns)

Significant Measurements This Run

- ToF and ring BPM data as a function of kicker timing (hopefully amplitude)
 Goal: ToF as a function of transverse amplitude
- ToF and BPM data vs. displacement of one F quad
 - on 0.1 mm steps
 - Goal: understand how best to get response matrix, and work out optimal displacement to use
 - Eventually use to get closed orbit correction
 - Will also tell us about the machine
 - Should be done for all magnets (D, F displacements, vertical correctors), several different energies
 - Important to get one right so we can take all this data quickly

Wall Current Monitor in Ring

- Sorry, didn't finish plots, summarize in words
- Can clearly see bunch lengthening (?) in wall current monitor signal
 - Also seen in raw BPM signal, but much uglier and more difficult to identify
 - Appears to have some structure when seen in BPM signal?
- Accurate current measurements require integral of pulse
- For accurate ToF measurements, should unfold response function

Poincare BPM Analysis (Unfinished)

- My goal: amplitude for different kicker settings
- Simplistic attempts didn't show a good correlation between amplitude and kicker setting. Try something more sophisticated.
- Plotted amplitude vs. turn number, saw large fluctuation up and down
- Goal: find common (for sets with one kicker setting) closed orbit and ellipse shape to compute amplitude
- Some bad BPM data makes this more challenging

Single Good Poincare Set

Single Outlier Poincare Set

- Plot vs. turn number, three regions
 - 1. Betatron oscillation
 - 2. Decohered "closed orbit"
 - 3. Noise
- Closed orbit region has dependence on turn number
 - I typically linearly extrapolate this back to zero
 - Looking at Poincare data, this is clearly wrong

- Subsequent runs, try to detune RF cavities
 - See if beam loading is the cause
 - Look at current dependence?
 - Numerous other possible causes
 - Nonlinear BPM response
 - Selective truncation
 - Problems with the mapping (source is not a point!)

Poincare Analysis: Current Status

- For some sets, have passable amplitude vs. turn number
- Trying to make something that works for collection of sets
 - Outliers mess this up a bit
- Algorithm uses
 - Quadratic fit to close orbit
 - Fit beam ellipse
 - Goal function for amplitude that
 - Tries to be monotonically decreasing in betatron region
 - Zeros the amplitude in the closed orbit region

Poincare Analysis: Current Status

