

Charge recombination for the muon collider-3

R.C. Fernow BNL

AAG Weekly Meeting

11 April 2012

Introduction

- the two charged muon beams need to be recombined somewhere in the cooling channel
- look here at an alternate design to avoid intersecting beam lines
 - 1. Norem matching (tapered bent solenoid field and curvature)
 - 2. allow acceleration to higher momentum to help reduce emittance growth
 - 3. each charge sees two bent solenoids with opposite curvature

first bent solenoid is same for both charges

properties of 2nd bent solenoid differs from the first

 B_s is same, but θ_{bend} , Δy , h, and coil dimensions are different only partially removes dispersion in exit beam try to minimize emittance growth in exit beam

Bob's scheme at Telluride shows recombination after final cooling

Schematic layout

Entrance to BS2

Make smaller deflection in BS1 than BS2 straightforward magnet design external beam lines are not in a plane exit beam likely has dispersion & $\Delta\epsilon$

Input beam parameters

ε _{TN}	22	μm	
ε _{LN}	72	mm	
p	400	MeV/c	
σχ	2	mm	
σ _{PX}	1.16	MeV/c	
β _T	69	cm	
σ _Z	300	cm	
σ _{PZ}	2.47	MeV/c	

• σ_Z is at maximum for 4 MHz following RF

Solenoid channel parameters

B _S	8	Т
$\lambda_{\rm L}$	1.047	m
Le	52	cm
Lc1	20	cm
h1	10	cm
$\Delta y1$	±1.2	cm
Lc2	28	cm
h2	30	cm
Δy2	±4	cm
LT	1.5	m

• incoming beam lines are offset by ±2.8 cm

Full channel

Full channel

• dispersion is mostly removed

G4beamline model

• beam lines do not intersect

Coil properties

- adjusted coil dimensions to avoid overlap
- adjusted current densities to give roughly 8 T in all beamlines

	L [cm]	a [cm]	b [cm]	J _E [A/mm ²]
external	5	1	3	394
BS1	5	2.2	3.2	882
transport	5	1	2	743
BS2	5	10	25	89

- are these current densities feasible?
- is enough room available for cryostats and mechanical supports?
- many of the coils can be made longer in a practical design

Summary

- this design uses non-symmetric bent solenoids
- makes it possible to avoid intersecting beam lines
- no problem with transmission or longitudinal emittance growth
- ~3% growth in transverse emittance
- small dispersions in the exit beam bunches
- requires large current densities in some of the coils
- design may need to be iterated if the required coil properties are not feasible